切换至 "中华医学电子期刊资源库"

中华卫生应急电子杂志 ›› 2022, Vol. 08 ›› Issue (05) : 262 -271. doi: 10.3877/cma.j.issn.2095-9133.2022.05.002

论著

新型冠状病毒肺炎患者死亡风险列线图模型的构建与验证
程利1, 柏文辉2, 周晨亮1, 柳舟3,(), 张亮4, 仇鹏5   
  1. 1. 430200 湖北武汉,武汉大学人民医院东院重症医学科
    2. 430200 湖北武汉,武汉大学人民医院肝胆外科
    3. 430200 湖北武汉,武汉大学人民医院重症医学科
    4. 430200 湖北武汉,武汉大学人民医院放射科
    5. 200011 上海,上海市第九人民医院血管外科
  • 收稿日期:2022-06-07 出版日期:2022-10-18
  • 通信作者: 柳舟

Establishment and validation of a mortality prognostic nomogram model for COVID-19 patients

Li Cheng1, Wenhui Bai2, Chenliang Zhou1, Zhou Liu3,(), Liang Zhang4, Peng Chou5   

  1. 1. Department of Critical Medicine, East Hospital, People’s Hospital of Wuhan University, Wuhan 430200, China
    2. Department of Hepatobiliary Surgery, East Hospital, People’s Hospital of Wuhan University, Wuhan 430200, China
    3. Department of Critical Care Medicine, East Hospital, People’s Hospital of Wuhan University, Wuhan 430200, China
    4. Department of Radiology, East Hospital, People’s Hospital of Wuhan University, Wuhan 430200, China
    5. Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai 200011, China
  • Received:2022-06-07 Published:2022-10-18
  • Corresponding author: Zhou Liu
引用本文:

程利, 柏文辉, 周晨亮, 柳舟, 张亮, 仇鹏. 新型冠状病毒肺炎患者死亡风险列线图模型的构建与验证[J]. 中华卫生应急电子杂志, 2022, 08(05): 262-271.

Li Cheng, Wenhui Bai, Chenliang Zhou, Zhou Liu, Liang Zhang, Peng Chou. Establishment and validation of a mortality prognostic nomogram model for COVID-19 patients[J]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2022, 08(05): 262-271.

目的

构建列线图模型以预测新型冠状病毒病2019(COVID-19)的死亡风险,以早期筛选死亡高危患者。

方法

收集2020年1月至2020年4月武汉大学人民医院(东院)和2022年4月至2022年5月上海市第九人民医院(北院)收治COVID-19患者的临床资料。以武汉大学人民医院患者(166例)作为训练集,上海市第九人民医院患者(52例)作为验证集。采用先单因素后多因素Logistic回归分析确定死亡的独立危险因素,应用R语言构建列线图模型。采用受试者工作特征曲线(ROC)、C指数及校准曲线评估列线图模型的预测准确性及判断能力,决策曲线分析评估模型的临床应用价值。通过验证集对模型进行外部验证。

结果

本研究共纳入重型/危重型COVID-19患者218例,其中67例(30.73%)死亡,多因素Logistic回归分析显示,≥3种基础疾病、APACHE Ⅱ评分(5~40分)、中性粒细胞/淋巴细胞(0~90)、乳酸(0~16mmol/L)均是死亡的独立危险因素。ROC曲线分析显示,训练集的曲线下面积(AUC)为0.869(95%CI:0.811~0.927),验证集AUC为0.797(95%CI:0.671~0.924),训练集与验证集校准曲线经Hosmer-Lemeshow拟合优度检验(P=0.473,P=0.421)。临床决策曲线分析表明,该列线图预测模型的临床应用价值高。

结论

本研究构建COVID-19患者死亡风险列线图模型预测效能良好,可个体化、可视化、图形化预测,有助于医师早期做出合适临床决策及诊疗。

Objective

To establish a nomogram model for predicting the mortality risk of COVID-19 patients, in order to early screen those who are in higher risk.

Methods

All the clinical data of COVID-19 patients were collected from Eastern Campus of Renmin Hospital of Wuhan University during 2020 January to April and North Campus of Shanghai Ninth People Hospital during 2022 April to May. Patients (n=166) from the Renmin Hospital of Wuhan Universiy were considered as training set, while those(n=52) from Shanghai Ninth Peoplef Wuhan Universiy were considered as training sets of Renmin Hospital of Wuhan University during 2020 January to April and North Campuste logistic regression analysis and the R Programming Language was used to conduct the nomogram model. The prediction accuracy and judgment ability of nomogram model were evaluated by receiver operating characteristic curve (ROC), C index and calibration curve, and the clinical application value was evaluated by decision curve analysis. The model was externally validated by the validation set.

Results

A total of 218 patients with severe/critical COVID-19 were included in this study, among whom 67 of them died (30.73%). Multivariate logistic regression analysis showed that more than three kinds of underlying diseases, APACHEⅡ score, neutrophile granulocyte/lymphocyte, and lactate were all independent risk factors. ROC analysis showed that the area under curve (AUC) of training set was 0.869 (95% CI: 0.811-0.927), while the AUC of validation set was 0.797 (95% CI: 0.671-0.924). The calibration curves between the training set and the validation set were tested by Hosmer lemeshow test (P=0.473, P=0.421). Decision curve analysis showed that the nomogram prediction model had high clinical application value.

Conclusions

The nomogram model presents significantly predictive value for mortality risk of COVID-19, which is individualized, visualized and graphically predicted. Whatpredict, it is benefit for physician to make appropriate clinical decisions and treatment at early stage.

表1 训练集与验证集基线资料比较
表2 训练集与验证集中生存组与死亡组患者的基线资料比较
组别 例数 男性/女性(例) 重型/危重型 年龄[例(%)]
18~50岁 51~60岁 60~70岁 70~80岁 >80岁
训练集                
  死亡组 49 35/14 11/38 7(14.3) 7(14.3) 10(20.4) 16(32.6) 9(18.4)
  生存组 117 70/47 86/31 25(21.4) 21(17.9) 41(35.0) 23(19.7) 7(6.0)
Z2   2.00 37.06 11.56
P   >0.05 <0.001 <0.05
验证集                
  死亡组 18 8/10 8/9 0(0.0) 0(0.0) 1(5.5) 5(27.8) 12(66.7)
  生存组 34 23/11 29/6 0(0.0) 1(2.9) 4(11.8) 10(29.4) 19(55.9)
Z2   2.63 7.14
P   >0.05 <0.05
组别 例数 病程[d,M(QL, QU)] 临床症状[例(%)]
发热 咳嗽 乏力 腹泻 呼吸困难 意识障碍
训练集                
  死亡组 49 19.0(13.0,29.5) 41(83.7) 31(63.3) 16(32.7) 7(14.3) 18(36.7) 9(18.4)
  生存组 117 18.0(12.5,27.5) 105(89.7) 90(76.9) 51(43.6) 14(12.0) 32(27.4) 26(22.2)
Z2   -0.60 1.20 3.26 1.72 0.17 1.45 0.31
P   0.547 0.273 0.071 0.190 0.682 0.229 0.579
验证集                
  死亡组 18 5.0(4.0,7.25) 9(50.0) 13(72.2) 10(55.6) 1(5.6) 4(22.2) 9(50.0)
  生存组 34 8.5(4.8,12.0) 17(50.0) 23(67.6) 13(38.2) 2(5.9) 6(17.6) 13(38.2)
Z2   -1.95 0.00 0.12 1.43 0.00a 0.16a 0.67
P   >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
组别 例数 临床症状[例(%)] 既往史[例(%)]
其他 COPD 高血压 糖尿病 冠心病 脑血管疾病 消化系统疾病
训练集                
  死亡组 49 5(10.2) 4(8.2) 24(49.0) 8(16.3) 6(12.2) 5(10.2) 3(6.1)
  生存组 117 8(6.8) 17(14.5) 49(41.9) 23(19.7) 18(15.4) 11(9.4) 5(4.3)
Z2   0.54a 1.27 0.71 0.25 0.28 0.26a 0.01a
P   >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
验证集                
  死亡组 18 2(11.1) 7(38.9) 9(50.0) 6(33.3) 11(61.1) 10(55.6) 2(11.1)
  生存组 34 3(8.8) 14(41.2) 23(67.6) 12(35.3) 14(41.2) 13(38.2) 1(2.9)
Z2   0.00a 0.03 1.55 0.02 1.87 1.43 0.33a
P   >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
组别 例数 既往史[例(%)]
肾功能不全 自身免疫系统疾病 肿瘤 ≥3种基础疾病 APCHEⅡ评分[分,M(QL,QU)] GCS评分[分,M(QL,QU)]
训练集              
  死亡组 49 7(14.3) 2(4.1) 3(6.1) 12(24.5) 16.0(12.0,20.0) 11.0(8.5,13.0)
  生存组 117 10(8.5) 2(1.7) 4(3.4) 10(8.5) 14.0(12.0,16.5) 12.0(10.0,14.0)
Z2   1.24 0.13a 0.14a 7.64 -2.42 -1.74
P   >0.05 >0.05 >0.05 <0.05 <0.05 >0.05
验证集              
  死亡组 18 7(38.9) 1(5.6) 2(11.1) 12(66.7) 24.0(18.8,26.0) 11.0(7.8,13.0)
  生存组 34 6(17.6) 0(0.0) 2(5.9) 12(35.3) 20.3(18.5,21.5) 8.0(6.0,12.0)
Z2   1.81a 0.02a 4.66 -3.18 -1.64
P   >0.05 >0.056 >0.05 <0.05 <0.05 >0.05
表3 训练集与验证集重型/危重型COVID-19患者入院后24 h内最差的实验室指标比较
组别 例数 变量[M(QL,QU)]
WBC(×109/L) N(×109/L) L(×109/L) NLR Hb(g/L) PLT(×109/L) NPR
训练集                
  死亡组 49 13.9(12.0,19.9) 9.6(5.42,15.6) 0.6(0.4,1.0) 18.9(14.4,27.4) 117.0(91.5,129.5) 101.0(41.0,176.0) 0.19(0.08,0.41)
  生存组 117 8.6(7.0,9.1) 8.0(4.8,12.2) 0.8(0.5,1.3) 12.0(6.9,16.7) 120.0(107.5,132.0) 148.5(96.3,222.3) 0.02(0.01,0.04)
Z   -7.65 -1.28 -1.73 -5.62 -1.74 -3.04 -8.93
P   <0.001 >0.05 >0.05 <0.001 >0.05 <0.05 <0.001
验证集                
  死亡组 18 12.0(9.1,14.2) 10.6(6.9,13.9) 0.6(0.3,0.7) 19.4(11.8,30.1) 120.5(96.0,125.5) 108.0(66.0,209.5) 0.09(0.04,0.17)
  生存组 34 9.3(6.0,14.3) 8.0(4.9,13.2) 0.9(0.4,1.4) 9.3(4.0,21.4) 108.5(85.0,139.0) 192.0(161.5,264.8) 0.04(0.03,0.06)
Z   -1.29 -1.21 -2.84 -2.50 -0.85 -2.50 -2.50
P   >0.05 >0.05 <0.05 <0.05 >0.05 <0.05 <0.05
组别 例数 变量[M(QL,QU)]
PCT(μg/L) ALT(U/L) AST(U/L) TBIL(μmol/L) ALB(g/L) Urea(mmol/L) Cr(μmol/L)
训练集                
  死亡组 49 1.0(0.6,1.5) 38.0(19.0,70.5) 39.0(21.0,67.0) 16.4(9.5,23.7) 29.3(28.2,35.6) 6.3(5.0,11.3) 64.0(40.0,159.5)
  生存组 117 0.4(0.1,3.1) 28.0(19.0,48.0) 31.0(21.5,42.5) 11.5(9.0,18.4) 34.1(31.5,37.1) 5.4(4.3,7.9) 63.0(49.5,80.5)
Z   -1.03 -4.42 -1.55 -1.79 -2.16 -1.85 -0.37
P   >0.05 <0.001 >0.05 >0.05 <0.05 >0.05 >0.05
验证集                
  死亡组 18 1.9(0.3,12.8) 18.5(12.8,30.8) 44.0(28.5,52.3) 11.4(8.3,17.6) 32.5(27.5,38.0) 15.5(10.5,34.4) 110.5(86.5,251.8)
  生存组 34 0.2(0.1,1.3) 21.5(16.0,38.3) 31.0(23.0,49.8) 11.2(8.8,19.0) 32.5(28.8,37.0) 10.7(8.2,14.3) 82.0(58.5,111.0)
Z   -2.55 -1.37 -1.39 -1.11 -0.14 -2.01 -2.26
P   <0.05 >0.05 >0.05 >0.05 >0.05 <0.05 <0.05
组别 例数 变量[M(QL,QU)]
预估GFR(mL/min) Lac(mmol/L) BNP(ng/L) cTnI(gl/L) PT(s) APTT(s) D-二聚体(mg/L)
训练集                
  死亡组 49 94.4(71.2,113.0) 3.1(2.2,4.5) 789.0(266.5,2611.3) 0.7(0.2,3.1) 12.7(10.5,14.8) 28.7(17.1,33.8) 4.0(2.3,9.2)
  生存组 117 97.2(84.6,106.1) 2.0(1.5,2.7) 319.7(150.7,729.8) 0.2(0.1,0.7) 12.2(11.6,12.9) 27.9(25.6,31.4) 2.5(1.0,7.1)
Z   -0.24 -5.27 -2.92 -6.46 -1.32 -0.05 -2.21
P   >0.05 <0.001 <0.05 <0.001 >0.05 >0.05 <0.05
验证集                
  死亡组 18 46.5(17.5,64.0) 2.5(2.0,4.6) 423.0(191.8,742.5) 0.11(0.03,0.19) 13.0(12.1,13.8) 34.5(27.4,37.2) 5.6(1.9,9.0)
  生存组 34 77.0(53.0,92.8) 1.9(1.2,2.3) 174.0(109.3,294.8) 0.03(0.01,0.08) 12.3(11.7,13.2) 31.7(27.4,34.9) 2.2(1.0,5.2)
Z   -2.68 -2.85 -2.65 -2.51 -1.44 -0.80 -2.29
P   <0.05 <0.05 <0.05 <0.05 >0.05 >0.05 <0.05
表4 COVID-19患者死亡的多因素Logistics回归分析
表5 COVID-19患者死亡的独立危险因素
图1 预测COVID-19死亡列线图风险模型的构建注:APACHEⅡ评分为急性生理与慢性健康状况评分,NLR为中性粒细胞计数与淋巴细胞计数的比值,Lac为乳酸,COVID-19为新型冠状病毒病2019
图2 列线图预测COVID-19患者死亡的ROC曲线注:a为训练集,b为验证集
图3 列线图预测COVID-19患者死亡的校准曲线注:R2为伪决定系数,a为训练集,b为验证集
图4 列线图的临床决策曲线注:a为训练集,b为验证集;水平实心黑线(None):所有COVID-19患者均存活;实心灰色线(All):所有患者均死亡
1
Ochani RAsad AYasmin F,et al.COVID-19 pandemic:from origins to outcomes. a comprehensive review of viral pathogenesis,clinical manifestations,diagnostic evaluation,and management[J].Infez Med202129(1):20-36.
2
Gong JDong HXia QS,et al.Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19:a retrospective study[J].BMC Infect Dis202020(1):963.
3
宋倩倩,赵涵,方立群,等.新型冠状病毒肺炎的早期传染病流行病学参数估计研究[J].中华流行病学杂志202041(4):461-465.
4
Knight SRHo APius R,et al.Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO clinical characterisation protocol:development and validation of the 4C mortality score[J].BMJ2020(370):m3339.
5
Berenguer JBorobia AMRyan P,et al.Development and validation of a prediction model for 30-day mortality in hospitalised patients with COVID-19:the COVID-19 SEIMC score[J].Thorax202176(9):920-929.
6
Bello-Chavolla OYBahena-López JPAntonio-Villa NE,et al.Predicting mortality due to SARS-CoV-2:a mechanistic score relating obesity and diabetes to COVID-19 outcomes in mexico[J].J Clin Endocrinol Metab2020105(8):dgaa346.
7
Hu HDu HLi J,et al.Early prediction and identification for severe patients during the pandemic of COVID-19:a severe COVID-19 risk model constructed by multivariate logistic regression analysis[J].J Glob Health202010(2):020510.
8
Ji DZhang DXu J,et al.Prediction for progression risk in patients with COVID-19 pneumonia:the CALL score[J].Clin Infect Dis202071(6):1393-1399.
9
柳舟,张亮,詹丽英,等.重型/危重型新型冠状病毒肺炎患者临床特征及死亡危险因素分析[J].微循环学杂志202131(2):46-51,56.
10
华中科技大学同济医学院附属同济医院同济医院救治医疗专家组.新型冠状病毒感染的肺炎诊疗快速指南(第一版).[EB/OL].(2020-01-22)[2022-06-07].

URL    
11
中华人民共和国国家卫生健康委员会办公厅,中华人民共和国国家中医药管理局办公室.新型冠状病毒肺炎诊疗方案(试行第九版)[J].中国医药202217(4):481-487.
12
Nicola MAlsafi ZSohrabi C,et al.The socio-economic implications of the coronavirus pandemic(COVID-19):a review[J].Int J Surg2020(78):185-193.
13
Sharma AAhmad Farouk ILal SK.COVID-19:a review on the novel coronavirus disease evolution,transmission,detection,control and prevention[J].Viruses, 202113(2):202.
14
Grasselli GGreco MZanella A,et al.COVID-19 Lombardy ICU network.risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy,Italy[J].JAMA Intern Med2020180(10):1345-1355.
15
Weiss PMurdoch DR.Clinical course and mortality risk of severe COVID-19[J]. Lancet2020395(10229):1014-1015.
16
Guan WJNi ZYHu Y,et al.Clinical characteristics of coronavirus disease 2019 in China[J].N Engl J Med2020382(18):1708-1720.
17
Chen YZhou XYan H,et al.CANPT score:a tool to predict severe COVID-19 on admission[J].Front Med(Lausanne)2021(8):608107.
18
Li XZhao YLu Y,et al.Performances of clinical characteristics and radiological findings in identifying COVID-19 from suspected cases[J].BMC Med Imaging202222(1):55.
19
Gong JOu JQiu X,et al.A tool for early prediction of severe coronavirus disease 2019 (COVID-19):a multicenter study using the risk nomogram in Wuhan and Guangdong,China[J].Clin Infect Dis202071(15):833-840.
20
Ko HChung HKang WS,et al.An artificial intelligence model to predict the mortality of COVID-19 patients at hospital admission time using routine blood samples:development and validation of an ensemble model[J].J Med Internet Res202022(12):e25442.
21
Wynants LVan Calster BCollins GS,et al.Prediction models for diagnosis and prognosis of covid-19:systematic review and critical appraisal[J].BMJ, 2020(369):m1328.
22
Li LFang XCheng L,et al.Development and validation of a prognostic nomogram for predicting in-hospital mortality of COVID-19:a multicenter retrospective cohort study of 4086 cases in China[J].Aging (Albany NY)202113(3):3176-3189.
23
Li JWang LLiu C,et al.Exploration of prognostic factors for critical COVID-19 patients using a nomogram model[J].Sci Rep202111(1):8192.
24
Cheng LYang JZBai WH,et al.Prognostic value of serum amyloid a in patients with COVID-19[J].Infection202048(5):715-722.
25
Moon HJKim KKang EK,et al.Prediction of COVID-19-related mortality and 30-day and 60-day survival probabilities using a nomogram[J].J Korean Med Sci202136(35):e248.
26
薛毅,李沫言,杜大勇,等.新型冠状病毒对冠心病患者的影响及治疗策略[J].中国循证心血管医学杂志202012(5):533-534.
27
Nishiga MWang DWHan Y,et al.COVID-19 and cardiovascular disease:from basic mechanisms to clinical perspectives[J].Nat Rev Cardiol202017(9):543-558.
28
杨航,杨林承,张瑞涛,等.合并高血压、冠心病、糖尿病的新型冠状病毒肺炎患者发生病死的危险因素分析[J].北京大学学报(医学版)202052(3):420-424.
29
Beigmohammadi MTAmoozadeh LRezaei Motlagh F,et al.Mortality predictive value of APACHE II and SOFA scores in COVID-19 patients in the intensive care unit[J].Can Respir J2022(2022):5129314.
30
Turner JSMudaliar YMChang RW,et al.Acute physiology and chronic health evaluation(APACHE II)scoring in a cardiothoracic intensive care unit[J].Crit Care Med199119(10):1266-1269.
31
王钰,贾寒,忽胜和.中性粒细胞-淋巴细胞比值(NLR)在炎症疾病中的研究进展[J].世界最新医学信息文摘202121(8):93-95.
32
Akbari HTabrizi RLankarani KB,et al.The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis[J].Life Sci2020(258):118167.
33
许镜清,陈晗,李俊,等.早期乳酸水平监测对血流感染相关的脓毒性休克患者预后的价值[J].福建医科大学学报202054(3):166-170.
34
Carpenè GOnorato DNocini R,et al.Blood lactate concentration in COVID-19: a systematic literature review[J].Clin Chem Lab Med202160(3):332-337.
[1] 孙帼, 谢迎东, 徐超丽, 杨斌. 超声联合临床特征的列线图模型预测甲状腺乳头状癌淋巴结转移的价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 734-742.
[2] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[3] 郑鹏, 吴赛萍, 谢秀璋, 史庆丰. 术前预测感染性肾结石列线图模型的构建及验证[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 299-306.
[4] 李圣鹏, 方爱蓝, 刘诗宁, 王丹, 刘湘奇. 下颌阻生第三磨牙拔除难度的预测因素与评估方法[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 441-445.
[5] 张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.
[6] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[7] 甄子铂, 刘金虎. 基于列线图模型探究静脉全身麻醉腹腔镜胆囊切除术患者术后肠道功能紊乱的影响因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 61-65.
[8] 王万川, 麦广智, 张晓槟, 冯家豪. 腹腔镜下LAR术治疗低位直肠癌保肛术中钉仓数量与术后LARS的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 491-496.
[9] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[10] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[11] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[12] 王小娜, 谭微, 李悦, 姜文艳. 预测性护理对结直肠癌根治术患者围手术期生活质量、情绪及并发症的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 525-529.
[13] 秦维, 王丹, 孙玉, 霍玉玲, 祝素平, 郑艳丽, 薛瑞. 血清层粘连蛋白、Ⅳ型胶原蛋白对代偿期肝硬化食管胃静脉曲张出血的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 447-451.
[14] 张郁妍, 胡滨, 张伟红, 徐楣, 朱慧, 羊馨玥, 刘海玲. 妊娠中期心血管超声参数与肝功能的相关性及对不良妊娠结局的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 499-504.
[15] 王亚丹, 吴静, 黄博洋, 王苗苗, 郭春梅, 宿慧, 王沧海, 王静, 丁鹏鹏, 刘红. 白光内镜下结直肠肿瘤性质预测模型的构建与验证[J]. 中华临床医师杂志(电子版), 2023, 17(06): 655-661.
阅读次数
全文


摘要