切换至 "中华医学电子期刊资源库"

中华卫生应急电子杂志 ›› 2024, Vol. 10 ›› Issue (02) : 107 -114. doi: 10.3877/cma.j.issn.2095-9133.2024.02.008

论著

高脂饲喂小鼠结肠ILC3s变化对肠屏障应激能力的影响
徐凤华1, 喻丽玲2, 路晓光3,(), 王迎莉4, 宋轶3   
  1. 1. 116622 辽宁大连,大连大学研究生学院
    2. 571499 海南琼海,海南省琼海市人民医院
    3. 116001 辽宁大连,大连大学附属中山医院急诊科
    4. 116001 辽宁大连,大连大学附属中山医院急诊ICU
  • 收稿日期:2024-03-22 出版日期:2024-04-18
  • 通信作者: 路晓光
  • 基金资助:
    国家自然科学基金资助项目(81673801、81473512)

Effects of colonic ILC3s alterations on intestinal barrier stress capability in mice fed with high-fat diet

Fenghua Xu1, Liling Yu2, Xiaoguang Lu3,(), Yingli Wang4, Yi Song3   

  1. 1. Graduate School of Dalian University, Dalian 116622, China
    2. Qionghai People’s Hospital of Hainan Province, Qionghai 571499, China
    3. Department of Emergency Medicine, the Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
    4. Emergency ICU, the Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
  • Received:2024-03-22 Published:2024-04-18
  • Corresponding author: Xiaoguang Lu
引用本文:

徐凤华, 喻丽玲, 路晓光, 王迎莉, 宋轶. 高脂饲喂小鼠结肠ILC3s变化对肠屏障应激能力的影响[J]. 中华卫生应急电子杂志, 2024, 10(02): 107-114.

Fenghua Xu, Liling Yu, Xiaoguang Lu, Yingli Wang, Yi Song. Effects of colonic ILC3s alterations on intestinal barrier stress capability in mice fed with high-fat diet[J]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2024, 10(02): 107-114.

目的

探讨高脂饲喂小鼠结肠三型固有淋巴细胞(ILC3s)的变化对肠黏膜屏障应激能力影响的潜在机制。

方法

将24只SPF级雄性C57BL/6J小鼠适应性饲养1周后,随机分为空白对照组(N-CON组)、重症急性胰腺炎(SAP)对照组(N-SAP组)、空白高脂组(H-CON组)、SAP高脂组(H-SAP组),每组6只。N-CON、N-SAP给予普通饮食,H-CON、H-SAP给予高脂饮食,持续21周;N-SAP组、H-SAP组采用腹腔注射20%左旋精氨酸(L-Arg)作为应激刺激制备小鼠SAP模型,N-CON组、H-CON组予以腹腔注射等体积等渗盐水。造模48 h后,酶联免疫吸附试验(ELISA)检测甘油三酯(TG)、总胆固醇(TC)、血清淀粉酶(AMS)、脂多糖(LPS)、肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)水平;HE染色观察胰腺、肺、结肠组织病理学形态;流式细胞术分析结肠ILC3s占淋巴细胞比例和IL-22+ ILC3s占结肠ILC3s比例;免疫荧光法检测结肠荆豆凝集素(UEA-1)、白细胞介素-22受体A1(IL-22RA1)表达情况;Western blot检测岩藻糖基转移酶2(Fut2)、IL-22RA1蛋白的表达水平。

结果

与N-CON组相比,H-CON组小鼠体重、TG、TC以及血清AMS、LPS、IL-6、TNF-α水平显著升高(P<0.05),结肠ILC3s占淋巴细胞比例显著下降(P<0.05),IL-22+ILC3s占结肠ILC3s比例升高(P>0.05),Fut2、IL-22RA1蛋白表达下降(P>0.05),UEA-1、IL-22RA1平均荧光强度略有下降(P>0.05);给予20%Arg应激刺激后,与N-CON组相比,N-SAP组血清AMS、LPS、IL-6、TNF-α水平显著升高(P<0.05),结肠ILC3s占淋巴细胞比例显著下降(P<0.05),IL-22+ILC3s占结肠ILC3s比例变化显著升高(P<0.05),Fut2、IL-22RA1蛋白表达升高(P>0.05),UEA-1平均荧光强度显著下降(P<0.05),IL-22RA1平均荧光强度升高(P>0.05);与N-SAP组相比,H-SAP组结肠ILC3s占淋巴细胞比例降低(P>0.05),IL-22+ILC3s占结肠ILC3s比例升高(P>0.05),UEA-1平均荧光强度下降(P>0.05),IL-22RA1平均荧光强度显著升高(P<0.05),Fut2、IL-22RA1蛋白表达增加(P>0.05)。

结论

高脂饲喂小鼠的肠黏膜屏障应激能力削弱,可能与结肠ILC3s调节岩藻糖基化过程有关。

Objective

To investigate the impact of colonic group 3 innate lymphoid cells (ILC3s) on intestinal barrier stress capability in mice fed with high-fat diet.

Methods

Twenty-four SPF male C57BL/6J mice were adaptively fed for 1 week and then randomly divided into 4 groups (n=6): blank control group (N-CON), SAP control group (N-SAP), high-fat diet control group (H-CON), and SAP high-fat diet group (H-SAP). N-CON and N-SAP received a normal diet, while H-CON and H-SAP were fed a high-fat diet for 21 weeks. In the SAP group, 20% Arg was injected intraperitoneally as stress stimulation to prepare the mouse SAP model, while an equal volume of saline was injected into the CON groups. After 48 hours of modeling, serum levels of TC, TG, AMY, LPS, TNF-α, IL-6 were measured by ELISA; pancreatic histopathology as well as lung and colon tissue morphology were observed using HE staining; flow cytometry was employed to analyze changes in the proportion of colonic ILC3s among lymphocytes and changes in the proportion of IL-22+ ILC3s among colonic ILC3s; immunofluorescence was conducted to detect UEA-Ⅰ and IL-22RA1 expression; Western blot was performed to measure Fut2 and IL-22RA1 protein expression levels.

Results

Compared with the N-CON group, the H-CON group exhibited significantly increased levels of body weight, TG, TC, serum AMS, LPS, IL-6 and TNF-α (P<0.05), along with a significant decrease in the proportion of colon ILC3s in lymphocytes (P<0.05). The proportion of IL-22+ILC3s in the colon showed an increase (P>0.05), while the expressions of Fut2 and IL-22RA1 were decreased (P>0.05). The average fluorescence intensity of UEA-1 and IL-22RA1 slightly decreased (P>0.05). After stimulation with a 20% Arg stress in the N-SAP group compared to the N-CON group, there was a significant increase in serum AMS, LPS, IL-6 and TNF-a levels (P<0.05) and a significant decrease in the proportion of colon ILC3s in lymphocytes (P<0.05). The proportion of IL-22+ILC3s in the colon significantly increased (P<0.05), while protein expression of Fut2 and IL-22RA1 was increased as well (P>0.05). The average fluorescence intensity of UEA-I significantly decreased (P<0.05), but that for IL-22 RA1was increased (P>0.05). In comparison to the N-SAP group, the H-SAP group showed no significant changes regarding the proportions between colonic ILC3s and lymphocytes (P>0.05); however, the percentage of IL-22 +ILC3s in colonic ILC3s was significantly increased (P>0.05), while the average fluorescence intensity of UEA-I was decreased significantly (P<0.05), and also the protein expression of Fut2 and IL-22 RA1 was increased (P>0.05).

Conclusion

The intestinal barrier stress capability of mice fed with high-fat diet is impaired, which may be related to the regulation of fucosylation by ILC3s in the colon.

表1 结肠组织损伤评分标准
图1 高脂饲喂21周后小鼠体重及血清TG、TC变化情况注:TG为甘油三酯,TC为总胆固醇;a为体重含量分析,b为血清甘油三酯含量分析,c为血清总胆固醇含量分析
表2 小鼠体重及血清TG、TC变化情况(±s
图2 SAP刺激后小鼠的血清AMS、LPS、IL-6、TNF-α表达水平注:AMS为血清淀粉酶,LPS为脂多糖,IL-6为白细胞介素-6,TNF-α为肿瘤坏死因子-α;a为AMS含量分析,b为LPS含量分析,c为IL-6含量分析,d为TNF-α含量分析
图3 小鼠胰腺组织HE染色(×500)
图4 小鼠肺组织HE染色(×200)
图5 小鼠结肠组织HE染色(×100)
表3 胰腺、肺、结肠组织病理学评分(±s
图6 小鼠结肠ILC3s所占结肠固有层淋巴细胞比例及IL-22+ILC3s占结肠ILC3s比例注:a为Lin-、CD45+的ILC3s细胞群,b为CD127+、RORγt+的ILC3s细胞群,c为IL-22+的ILC3细胞群
图7 小鼠结肠ILC3s所占结肠固有层淋巴细胞比例及IL-22+ILC3s占结肠ILC3s比例变化注:a为各组小鼠结肠ILC3s占结肠固有层淋巴细胞比例统计分析,b为各组小鼠结肠IL-22+ILC3s占结肠ILC3s的比例统计分析
图8 小鼠结肠UEA-1、IL-22RA1免疫荧光染色注:绿色为结肠UEA-1,红色为IL-22RA1免疫荧光染色图,标尺为50 μm
图9 小鼠结肠UEA-1、IL-22RA1平均荧光强度值分析注:UEA-1为荆豆凝集素,IL-22RA1为白细胞介素-22受体A1;a为各组小鼠结肠UEA-1平均荧光强度,b为各组小鼠结肠IL-22RA1平均荧光强度
图10 小鼠结肠Fut2、IL-22RA1蛋白表达分析注:a为Fut2、IL-22RA1蛋白的Western Blot结果,b为各组小鼠Fut2蛋白表达结果分析,c为各组小鼠IL-22RA1蛋白表达结果分析
[1]
Harland J, Garton L. An update of the evidence relating to plant-based diets and cardiovascular disease, type 2 diabetes and overweight[J]. Nutrition Bulletin, 2016, 41(4): 323-338.
[2]
Wu M, Wang Q, Li H, et al. PLA2G12A protects against diet-induced obesity and insulin resistance by enhancing energy expenditure and clearance of circulating triglycerides[J]. FASEB J, 2024, 38(9): e23643-e23643.
[3]
康新,梁正凯,路晓光,等.大黄附子汤对重症急性胰腺炎大鼠肠黏膜上皮细胞及线粒体结构和功能的影响[J/CD].中华卫生应急电子杂志, 2016, 2(5): 309-314.
[4]
Schörghuber M, Fruhwald S. Effects of enteral nutrition on gastrointestinal function in patients who are critically ill[J]. Lancet Gastroenterol Hepatol, 2018, 3(4): 281-287.
[5]
Nascimento JC, Matheus VA, Oliveira RB, et al. High-fat diet induces disruption of the tight junction-mediated paracellular barrier in the proximal small intestine before the onset of type 2 diabetes and endotoxemia[J]. Dig Dis Sci, 2021, 66(10): 3359-3374.
[6]
徐晨曦,潘瑞乐,董梦晨,等.基于肠道菌群探讨粗壮女贞总苷对高脂血症金黄仓鼠的降脂作用机制[J].中国药理学通报, 2024, 40(3): 476-483.
[7]
栾仲秋,张忠绅,张慧杰.基于肠道菌群及脂质代谢探讨慢性肾脏病微炎症状态"湿瘀互结"的病机内涵[J].中医学报, 2024, 39(5): 919-923.
[8]
Ding S, Chi MM, Scull BP, et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse[J]. PloS one, 2010, 5(8): e12191.
[9]
Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, et al. Negative effects of a high-fat diet on intestinal permeability: a review[J]. Adv Nutr, 2020, 11(1): 77-91.
[10]
Chen L, Lei Y, Lu C, et al. Punicic acid ameliorates obesity-related hyperlipidemia and fatty liver in mice via regulation of intestinal flora and lipopolysaccharide-related signaling pathways[J]. Food Funct, 2024, 15(9): 5012-5025.
[11]
Sang T, Guo C, Guo D, et al. Suppression of obesity and inflammation by polysaccharide from sporoderm-broken spore of ganoderma lucidum via gut microbiota regulation[J]. Carbohydr Polym, 2021(256): 117594.
[12]
Mastrodonato M, Calamita G, Mentino D, et al. High-fat diet alters the glycosylation patterns of duodenal mucins in a murine model[J]. J Histochem Cytochem, 2020, 68(4): 279-294.
[13]
Ong MLDM, Yeruva S, Sailer A, et al. Differential regulation of claudin-2 and claudin-15 expression in children and adults with malabsorptive disease[J]. Lab Invest, 2020, 100(3): 483-490.
[14]
Winer DA, Luck H, Tsai S, et al. The Intestinal Immune System in Obesity and Insulin Resistance[J]. Cell Metab, 2016, 23(3): 413-426.
[15]
Xiong L, Ren F, Lv J, et al. Lactoferrin attenuates high-fat diet-induced hepatic steatosis and lipid metabolic dysfunctions by suppressing hepatic lipogenesis and down-regulating inflammation in C57BL/6J mice[J]. Food Funct, 2018, 9(8): 4328-4339.
[16]
Wang F, Huang H, Wei X, et al. Targeting cell death pathways in intestinal ischemia-reperfusion injury: a comprehensive review[J]. Cell Death Discov, 2024, 10(1): 112.
[17]
Cao W, Li RW, Chin Y, et al. Transcriptome analysis reveals the protective role of fructo-oligosaccharide in colonic mucosal barriers in exercise-induced stressed mice[J]. Food Funct, 2021, 12(10): 4484-4495.
[18]
Xian Y, Lv X, Xie M, et al. Physiological function and regulatory signal of intestinal type 3 innate lymphoid cell(s)[J]. Life Sci, 2020(262): 118504.
[19]
Zhou W, Sonnenberg GF. Activation and suppression of group 3 innate lymphoid cells in the gut [J]. Trends Immunol, 2020, 41(8): 721-733.
[20]
Withers DR, Hepworth MR, Wang X, et al. Transient inhibition of ROR-γt therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells[J]. Nat Med, 2016, 22(3): 319-323.
[21]
张晓音,赵圣国,骆超超,等.岩藻糖介导微生物与肠道上皮细胞的互作及其机制[J].动物营养学报, 2018, 30(7): 2473-2479.
[22]
杜华,佘香,余加林,等.小鼠肠上皮细胞岩藻糖基化与新生儿坏死性小肠结肠炎发生的关系[J].解放军医学杂志, 2018, 43(10): 828-833.
[23]
Chen H, Sun L, Feng L, et al. Intermittent fasting promotes type 3 innate lymphoid cells secreting IL-22 contributing to the beigeing of white adipose tissue[J]. Elife, 2024(12): RP91060.
[24]
He L, Guo Z, Wang W, et al. FUT2 inhibits the EMT and metastasis of colorectal cancer by increasing LRP1 fucosylation[J]. Cell Commun Signal, 2023, 21(1):63.
[25]
Zhou J, Hou P, Yao Y, et al. Dihydromyricetin Improves high-fat diet-induced hyperglycemia through ilc3 activation via a sirt3-dependent mechanism[J]. Mol nutr food res, 2022, 66(16): e2101093.
[26]
宋轶,仲益龙,路晓光,等.大黄附子汤改善小鼠重症急性胰腺炎肠动力障碍的机制研究[J/CD].中华卫生应急电子杂志, 2022, 8(4): 216-221.
[27]
宋轶,赵伟彤,路晓光,等.大黄附子汤对重症急性胰腺炎小鼠肠道微皱褶细胞变化的影响[J/CD].中华卫生应急电子杂志, 2022, 8(3): 167-173.
[28]
郭文秀.基于肠道菌群和代谢产物探讨大黄附子汤治疗高脂血症性重症急性胰腺炎的机理[D].沈阳:辽宁中医药大学, 2024.
[1] 朱青云, 杨世刚, 潘新亭, 孙英, 李爱芹, 弥亮钰, 万有栋, 赵连兴, 周长勇. 核因子κB在重症急性胰腺炎大鼠肠黏膜屏障损伤中的作用机制[J]. 中华危重症医学杂志(电子版), 2017, 10(06): 386-390.
[2] 陈辉, 兰涛. 肠黏膜屏障功能障碍在重症急性胰腺炎中的研究进展[J]. 中华实验和临床感染病杂志(电子版), 2016, 10(06): 659-662.
[3] 王刚, 李涛, 刘玉芳. 胃癌根治手术后行抗菌药物治疗对患者肠道细菌移位及肠黏膜屏障功能的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 141-145.
[4] 林华婵, 林赛娟, 陈民学. 腹横筋膜阻滞对老年斜疝患者麻醉效果及肠黏膜屏障功能的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 454-457.
[5] 邓浩, 陈文哲, 潘卫东. 普萘洛尔对大鼠肝大部分切除术后肠道细菌移位的影响[J]. 中华肝脏外科手术学电子杂志, 2012, 01(03): 196-201.
[6] 徐胜, 黄顺荣. 肠黏膜屏障损伤与保护分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2018, 07(03): 276-280.
[7] 田锐, 谢云, 杜江, 金卫, 陆健, 谢晖, 朱献, 程瑞杰, 吕慧, 袁成斌, 王瑞兰. 热射病早期肠屏障功能损害与炎症反应因子的相关性[J]. 中华重症医学电子杂志, 2018, 04(04): 333-337.
[8] 吕涛, 张琨, 李晨. 芍黄安肠汤治疗重度活动期溃疡性结肠炎大肠湿热证患者的疗效及对肠黏膜屏障、炎症因子和免疫功能的影响[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 16-20.
[9] 牛鹏飞, 王延召, 曾庆敏, 雷福明. 肠黏膜屏障功能及损伤机制研究进展[J]. 中华临床医师杂志(电子版), 2020, 14(09): 735-739.
[10] 郭娜娜, 刘学军, 杜毓锋, 郝小燕, 钱力. 肺部疾病对肠黏膜屏障影响的研究进展[J]. 中华老年病研究电子杂志, 2018, 05(03): 45-48.
[11] 买买提·依斯热依力, 王永康, 阿巴伯克力·乌斯曼, 克力木·阿不都热依木. 基于16s rRNA测序分析小鼠高脂饮食诱导肥胖的肠道菌群结构特征[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 12-16.
阅读次数
全文


摘要