[1] |
Li L, Tan Q, Wu X, et al. Coagulopathy and acute pancreatitis:pathophysiology and clinical treatment[J]. Front Immunol, 2024(15): 1477160.
|
[2] |
Zhu L, Xu Y, Lei J. Molecular mechanism and potential role of mitophagy in acute pancreatitis[J]. Mol Med, 2024, 30(1): 136.
|
[3] |
Gukovskaya AS, Gukovsky I, Algul H, et al. Autophagy,inflammation, and immune dysfunction in the pathogenesis of pancreatitis[J]. Gastroenterology, 2017, 153(5): 1212-1226.
|
[4] |
Yang S, Imamura Y, Jenkins RW, et al. Autophagy inhibition dysregulates TBK1 signaling and promotes pancreatic inflammation[J]. Cancer Immunol Res, 2016, 4(6): 520-530.
|
[5] |
Heuer B. Mitochondrial DNA: Unraveling the “other” genome[J].J Am Assoc Nurse Pract, 2021, 33(9): 673-675.
|
[6] |
Zhou Y, Huang X, Jin Y, et al. The role of mitochondrial damageassociated molecular patterns in acute pancreatitis[J]. Biomed Pharmacother, 2024(175): 116690.
|
[7] |
Lu Y, Li Z, Zhang S, et al. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation[J].Theranostics, 2023, 13(2): 736-766.
|
[8] |
Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging[J].Science, 2011, 333(6046): 1109-1112.
|
[9] |
Palikaras K, Lionaki E, Tavernarakis N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans[J]. Nature,2015, 521(7553): 525-528.
|
[10] |
Swatek KN, Usher JL, Kueck AF, et al. Insights into ubiquitin chain architecture using ub-clipping[J]. Nature, 2019, 572(7770):533-537.
|
[11] |
Waltho A, Popp O, Lenz C, et al. K48- and K63-linked ubiquitin chain interactome reveals branch- and length-specific ubiquitin interactors[J]. Life Sci Alliance, 2024, 7(8): e202402740.
|
[12] |
Gonzalez-Santamarta M, Bouvier C, Rodriguez MS, et al. Ubiquitinchains dynamics and its role regulating crucial cellular processes[J]. Semin Cell Dev Biol, 2022(132): 155-170.
|
[13] |
Qiu J, Sheedlo MJ, Yu K, et al. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors[J]. Nature, 2016, 533(7601): 120-124.
|
[14] |
Bhogaraju S, Kalayil S, Liu Y, et al. Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination[J]. Cell, 2016, 167(6): 1636-1649.
|
[15] |
Zhang W, Wu A, Zhang G, et al. Ubiquitination of Ku70 by Parkin promotes apoptosis of lens epithelial cells[J]. FEBS J,2023, 290(15): 3828-3842.
|
[16] |
Trempe JF, Gehring K. Structural mechanisms of mitochondrial quality control mediated by PINK1 and parkin[J]. J Mol Biol,2023, 435(12): 168090.
|
[17] |
Dunkerley KM, Rintala-Dempsey AC, Salzano G, et al. Distinct phosphorylation signals drive acceptor versus free ubiquitin chain targeting by parkin[J]. Biochem J, 2022, 479(6): 751-766.
|
[18] |
Lazarou M, Sliter D A, Kane L A, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy[J].Nature, 2015, 524(7565): 309-314.
|
[19] |
Lorentzen KC, Prescott AR, Ganley IG. Artificial targeting of autophagy components to mitochondria reveals both conventional and unconventional mitophagy pathways[J]. Autophagy, 2025, 21(2): 315-337.
|
[20] |
Fiesel FC, Fričová D, Hayes CS, et al. Substitution of PINK1 Gly411 modulates substrate receptivity and turnover[J].Autophagy, 2023, 19(6): 1711-1732.
|
[21] |
Wang W, Li E, Zou J, et al. Ubiquitin ligase RBX2/SAG regulates mitochondrial ubiquitination and mitophagy[J]. Circulation Research,2024, 135(3): 18.
|
[22] |
Yamashita SI, Sugiura Y, Matsuoka Y, et al. Mitophagy mediated by BNIP3 and NIX protects against ferroptosis by downregulating mitochondrial reactive oxygen species[J]. Cell Death Differ, 2024,31(5): 651-661.
|
[23] |
Delgado JM, Shoemaker CJ. An unexpected journey for BNIP3[J].Autophagy, 2024, 20(6): 1447-1448.
|
[24] |
Koyano F, Okatsu K, Kosako H, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin[J]. Nature, 2014, 510(7503): 162-166.
|
[25] |
Moscat J, Karin M, Diaz-Meco MT. p62 in Cancer: signaling adaptor beyond autophagy[J]. Cell, 2016, 167(3): 606-609.
|
[26] |
Kelly G, Kataura T, Panek J, et al. Suppressed basal mitophagy drives cellular aging phenotypes that can be reversed by a p62-targeting small molecule[J]. Dev Cell, 2024, 59(15): 1924-1939.
|
[27] |
Zhang C, Peng X, Wang F, et al. Update on the correlation between mitochondrial dysfunction and intervertebral disk degeneration[J]. DNA Cell Biol, 2022, 41(3): 257-261.
|
[28] |
Wang DK, Zheng HL, Zhou WS, et al. Mitochondrial dysfunction in oxidative stress-mediated intervertebral disc degeneration[J].Orthop Surg, 2022, 14(8): 1569-1582.
|
[29] |
Shi RY, Zhu SH, Li V, et al. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke[J]. CNS Neurosci Ther, 2014, 20(12): 1045-1055.
|
[30] |
Chen Z, Liu L, Cheng Q, et al. Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy[J]. EMBO Rep, 2017, 18(3): 495-509.
|
[31] |
Zhou H, Zhu P, Guo J, et al. Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury[J]. Redox Biol, 2017(13): 498-507.
|
[32] |
Li K, Xia X, Tong Y. Multiple roles of mitochondrial autophagy receptor FUNDC1 in mitochondrial events and kidney disease[J].Front Cell Dev Biol, 2024(12): 1453365.
|
[33] |
Palikaras K, Lionaki E, Tavernarakis N. Coupling mitogenesis and mitophagy for longevity[J]. Autophagy, 2015, 11(8): 1428-1430.
|
[34] |
Chen F, Xu K, Han Y, et al. Mitochondrial dysfunction in pancreatic acinar cells: mechanisms and therapeutic strategies in acute pancreatitis[J]. Front Immunol, 2024(15): 1503087.
|
[35] |
Fang Y, Lin SY, Chen CH, et al. Algal oil mitigates sodium taurocholate-induced pancreatitis by alleviating calcium overload,oxidative stress, and nf-kappab activation in pancreatic acinar cells[J]. Curr Issues Mol Biol, 2024, 46(5): 4403-4416.
|
[36] |
Chen X, Zhong R, Hu B. Mitochondrial dysfunction in the pathogenesis of acute pancreatitis[J]. Hepatobiliary Pancreat Dis Int, 2025, 24(1): 76-83.
|
[37] |
Choi J, Oh T G, Jung HW, et al. Estrogen-related receptor gamma maintains pancreatic acinar cell function and identity by regulating cellular metabolism[J]. Gastroenterology, 2022, 163(1): 239-256.
|
[38] |
Habtezion A, Gukovskaya AS, Pandol SJ. Acute pancreatitis: a multifaceted set of organelle and cellular interactions[J].Gastroenterology, 2019, 156(7): 1941-1950.
|
[39] |
Zhang R, Zhu Z, Ma Y, et al. Rhizoma alismatis decoction improved mitochondrial dysfunction to alleviate SASP by enhancing autophagy flux and apoptosis in hyperlipidemia acute pancreatitis[J]. Phytomedicine, 2024(129): 155629.
|
[40] |
Vanasco V, Ropolo A, Grasso D, et al. Mitochondrial dynamics and VMP1-Related selective mitophagy in experimental acute pancreatitis[J]. Front Cell Dev Biol, 2021(9): 640094.
|
[41] |
Zhang J, Huang W, He Q, et al. PINK1/PARK2 dependent mitophagy effectively suppresses NLRP3 inflammasome to alleviate acute pancreatitis[J]. Free Radic Biol Med, 2021(166): 147-164.
|
[42] |
Lou G, Palikaras K, Lautrup S, et al. Mitophagy and neuroprotection[J]. Trends Mol Med, 2020, 26(1): 8-20.
|
[43] |
Kubli DA, Gustafsson AB. Mitochondria and mitophagy: the yin and yang of cell death control[J]. Circ Res, 2012, 111(9): 1208-1221.
|
[44] |
Yanagaki M, Shirai Y, Shimada Y, et al. Inhibition of lysosomal acid beta-glucosidase induces cell apoptosis via impairing mitochondrial clearance in pancreatic cancer[J]. Carcinogenesis,2022, 43(9): 826-837.
|
[45] |
Yan W, Wang Y, Lu Y, et al. Reg4 deficiency aggravates pancreatitis by increasing mitochondrial cell death and fibrosis[J]. Cell Death Dis, 2024, 15(5): 348.
|
[46] |
Li H, Wu D, Zhang H, et al. Autophagy-mediated ferroptosis is involved in development of severe acute pancreatitis[J]. BMC Gastroenterol, 2024, 24(1): 245.
|
[47] |
Choi S, Kim H. The remedial potential of lycopene in pancreatitis through regulation of autophagy[J]. Int J Mol Sci, 2020, 21(16):5775.
|
[48] |
Voronina S, Chvanov M, De Faveri F, et al. Autophagy, acute pancreatitis and the metamorphoses of a trypsinogen-activating organelle[J]. Cells, 2022, 11(16): 2514.
|
[49] |
Hirota M, Ohmuraya M, Hashimoto D, et al. Roles of autophagy and pancreatic secretory trypsin inhibitor in trypsinogen activation in acute pancreatitis[J]. Pancreas, 2020, 49(4): 493-497.
|
[50] |
Wang J, Wang L, Zhang X, et al. Cathepsin b aggravates acute pancreatitis by activating the NLRP3 inflammasome and promoting the caspase-1-induced pyroptosis[J]. Int Immunopharmacol,2021(94): 107496.
|
[51] |
Piplani H, Marek-Iannucci S, Sin J, et al. Simvastatin induces autophagic flux to restore cerulein-impaired phagosome-lysosome fusion in acute pancreatitis[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(11): 165530.
|
[52] |
Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J].Nature Immunology, 2010, 11(2): 136-140.
|
[53] |
Li Y, Zhu Y, Li S, et al. Deoxyarbutin attenuates severe acute pancreatitis via the HtrA2/PGC-1alpha pathway[J]. Free Radic Res, 2022, 56(9-10): 651-665.
|
[54] |
Liu W, Ren Y, Wang T, et al. Blocking CIRP protects against acute pancreatitis by improving mitochondrial function and suppressing pyroptosis in acinar cells[J]. Cell Death Discov, 2024,10(1): 156.
|
[55] |
Yang H, Liang Z, Xie J, et al. Gelsolin inhibits autophagy by regulating actin depolymerization in pancreatic ductal epithelial cells in acute pancreatitis[J]. Braz J Med Biol Res, 2023(56):e12279.
|
[56] |
Yang Y, Peng Y, Li Y, et al. Sestrin2 balances mitophagy and apoptosis through the PINK1-Parkin pathway to attenuate severe acute pancreatitis[J]. Cellular Signalling, 2025(126): 111518.
|
[57] |
朱晓东,刘锟荣,冯敏超,等. 基于PGAM5/Drp1/PINK1/Parkin轴调控线粒体自噬探讨清解化攻方对SAP大鼠肠黏膜屏障的保护作用[J]. 中国药理学通报, 2025, 41(3): 561-567.
|
[58] |
Sun P, Nie M. Effect and mechanism of angelic shaoyaosan mediated AMPK/SIRT1 positive feedback loop to promote autophagy and regulate the systemic inflammatory response in acute pancreatitis[J]. Cell Mol Biol (Noisy-le-grand), 2021, 67(2):101-108.
|
[59] |
Wu SK, Wang L, Wang F, et al. Resveratrol improved mitochondrial biogenesis by activating SIRT1/PGC-1alpha signal pathway in SAP[J]. Sci Rep, 2024, 14(1): 26216.
|