切换至 "中华医学电子期刊资源库"

中华卫生应急电子杂志 ›› 2025, Vol. 11 ›› Issue (02) : 116 -120. doi: 10.3877/cma.j.issn.2095-9133.2025.02.008

新技术新装备

用于ECMO设备的新型仿血流脉动辅助驱动装置的设计及应用
陈彬1, 张健峰1, 刘燕青2, 邓冬平3, 林孜1, 李传龙1,(), 姜文兵4,()   
  1. 1. 325026 浙江温州,天津大学温州安全(应急)研究院
    2. 300072 天津,天津大学
    3. 430415 湖北武汉,武汉工程职业技术学院
    4. 325099 浙江温州,温州市中心医院
  • 收稿日期:2025-02-24 出版日期:2025-04-18
  • 通信作者: 李传龙, 姜文兵
  • 基金资助:
    温州市科研项目(ZY2023027)

Design and application of a new simulated blood flow pulsation assisted driving device for ECMO equipment

Bin Chen, Jianfeng Zhang, Yanqing Liu, Dongping Deng, Zi Lin, Chuanlong Li(), Wenbing Jiang()   

  • Received:2025-02-24 Published:2025-04-18
  • Corresponding author: Chuanlong Li, Wenbing Jiang
引用本文:

陈彬, 张健峰, 刘燕青, 邓冬平, 林孜, 李传龙, 姜文兵. 用于ECMO设备的新型仿血流脉动辅助驱动装置的设计及应用[J/OL]. 中华卫生应急电子杂志, 2025, 11(02): 116-120.

Bin Chen, Jianfeng Zhang, Yanqing Liu, Dongping Deng, Zi Lin, Chuanlong Li, Wenbing Jiang. Design and application of a new simulated blood flow pulsation assisted driving device for ECMO equipment[J/OL]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2025, 11(02): 116-120.

图1 一种新型仿血流脉动辅助驱动装置主要结构三维示意图 注:100为脉动加压舱,200为脉动调节器,300为气管
图2 脉动加压舱主要结构三维示意图 注:10为气管加压舱前段,12为半柔性血液球囊,13为加压舱底盖,14为单向阀
图3 加压舱底盖结构二维截面示意图 注:13-1为3/8宝塔接口,13-2为球囊接口,13-3为定位槽,13-4为配合槽
图4 加压舱前段二维截面示意图 注:10-1为3/8宝塔接头,10-2为球囊接口,10-3为加压舱主体,10-4为调压螺纹,10-5为弹簧定位柱,10-6为配合台阶,10-7为定位槽,10-8为调压指示表,10-9为血流指示箭头,10-10为禁止2次使用指示标识
图5 半柔性血液球囊结构示意图 注:12-1为管道接口,12-2为腔体,12-3为凹型表面
图6 加压舱装配二维截面示意图 注:10为加压舱前段,12为半柔性血液球囊,13为加压舱底盖,14为单向阀
图7 脉动调节器结构二维截面示意图 注:100为脉动加压舱,21为缓冲室,22为调压弹簧,23为密封柱
图8 脉动调节器结构二维截面示意图2 注:21-1为调压螺母,21-2为泄压孔(四个),21-3为密封段,21-4为过压孔,21-5为第三宝塔接口,21-6为防滑键,21-7为方向指示标识
图9 脉动流产生原理二维截面示意图 注:11为加压舱,12为半柔性血液球囊,21为缓冲室,22为调压弹簧,23为密封柱,100为脉动加压舱,200为脉动调节器,300为气管
图10 临床上体外循环系统示意图 注:1为仿血流脉动辅助驱动装置,2为体外氧合膜肺,3为病患,4为血路管道,5为ECMO主机,6为外接气源
[1]
Chen NS, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395(10223): 507-513.
[2]
Tang JY, Li WC, Jiang FL, et al. Successfully treatment of application awake extracorporeal membrane oxygenation in critical COVID-19 patient: a case report[J]. J Cardiothorac Surg,2020, 15(1): 335.
[3]
Daviet F, Guervilly C, Baldesi O, et al. Heparin-induced thrombocytopenia in severe COVID-19[J]. Circulation, 2020, 142(19): 1875-1877.
[4]
Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study[J]. Intensive Care Med, 2020, 46(6): 1089-1098.
[5]
Chung M, Cabezas FR, Nunez JI, et al. Hemocompatibility-related adverse events and survival on venoarterial extracorporeal life support: an elso registry analysis[J]. JACC Heart Fail, 2020, 8(11): 892-902.
[6]
Aubron C, DePuydt J, Belon F, et al. Predictive factors of bleeding events in adults undergoing extracorporeal membrane oxygenation[J]. Ann Intensive Care, 2016, 6(1): 97.
[7]
Nunez JI, Gosling AF, O'Gara B, et al. Bleeding and thrombotic events in adults supported with venovenous extracorporeal membrane oxygenation: an ELSO registry analysis[J]. Intensive Care Med, 2022, 48(2): 213-224.
[8]
Wagner DD. Cell biology of Von Willebrand factor[J]. Annu Rev Cell Biol, 1990(6):217-46.
[9]
Sadler JE. Biochemistry and genetics of Von Willebrand factor[J].Annu Rev Biochem, 1998(67):395-424.
[10]
Vincentelli A, Susen S, Tourneau T, et al. Acquired Von Willebrand syndrome in aortic stenosis[J]. N Engl J Med, 2003,349(4): 343-349.
[11]
Velik-Salchner C, Eschertzhuber S, Streif W, et al. Acquired Von Willebrand syndrome in cardiac patients[J]. J Cardiothorac Vasc Anesth, 2008, 22(5): 719-724.
[12]
Schneider SW, Nuschele S, Wixforth A, et al. Shear-induced unfolding triggers adhesion of Von Willebrand factor fibers[J].Proc Natl Acad Sci U S A, 2007, 104(19): 7899-7903.
[13]
Zanardelli S, Chion AC, Groot E, et al. A novel binding site for ADAMTS13 constitutively exposed on the surface of globular VWF[J]. Blood, 2009, 114(13): 2819-2828.
[14]
Zhang XH, Halvorsen K, Zhang CZ, et al. Mechanoenzymatic cleavage of the ultralarge vascular protein Von Willebrand factor[J]. Science, 2009, 324(5932): 1330-1334.
[15]
Benk C, Lorenz R, Beyersdorf F, et al. Three-dimensional flow characteristics in ventricular assist devices: impact of valve design and operating conditions[J]. J Thorac Cardiovasc Surg,2011, 142(5): 1019-1026.
[16]
Geisen U, Heilmann C, Beyersdorf F, et al. Non-surgical bleeding in patients with ventricular assist devices could be explained by acquired Von Willebrand disease[J]. Eur J Cardiothorac Surg,2008, 33(4): 679-684.
[17]
Kalbhenn J, Schmidt R, Nakamura L, et al. Early diagnosis of acquired Von Willebrand Syndrome (AvWS) is elementary for clinical practice in patients treated with ECMO therapy[J]. J Atheroscler Thromb, 2015, 22(3): 265-271.
[18]
Tauber H, Ott H, Streif W, et al. Extracorporeal membrane oxygenation induces short-term loss of high-molecular-weight Von Willebrand factor multimers[J]. Anesth Analg, 2015, 120(4): 730-736.
[19]
Vincent F, Rauch A, Loobuyck V, et al. Arterial pulsatility and circulating Von Willebrand factor in patients on mechanical circulatory support[J]. J Am Coll Cardiol, 2018, 71(19): 2106-2018.
[20]
林翠敏. 急诊科急危重症患者转运交接过程中无缝隙护理管理模式的有效性分析[J]. 中国医药指南, 2023, 21(33): 43-46.
[21]
黄雪月, 郑楚真, 吴江英. 人工气道精细化护理管理在机械通气治疗重症患者中的应用效果[J]. 包头医学院学报, 2021, 37(6): 75-77.
[22]
徐美亚. 精细化护理管理在改善ICU机械通气患者下呼吸道感染中的应用[J]. 国际护理学杂志, 2021, 40(1): 4-7.
No related articles found!
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?