切换至 "中华医学电子期刊资源库"

中华卫生应急电子杂志 ›› 2016, Vol. 02 ›› Issue (01) : 33 -36. doi: 10.3877/cma.j.issn.2095-9133.2016.01.010

所属专题: 文献

论著

一氧化碳释放分子3对缺氧/复氧心肌细胞内活性氧的影响
张在其1,(), 幸小亮1, 贺凯1, 黄雪霜1, 杨勇1, 张荔铭1   
  1. 1. 418000 湖南怀化,湖南医药学院
  • 收稿日期:2016-01-23 出版日期:2016-02-18
  • 通信作者: 张在其
  • 基金资助:
    湖南省科技厅计划项目,湘财教指【2013】24号(2013FJ3063); 湖南省教育厅计划项目,湘财教指【2011】91号(11C1006)

Effects of water-soluble CO-releasing molecule on hypoxia/reoxygenation in myocardial cells

Zaiqi Zhang1,(), Xiaoliang Xing1, Kai He1, Xueshuang Huang1, Yong Yang1, Liming Zhang1   

  1. 1. Hunan University of Medicine, Huaihua 418000, China
  • Received:2016-01-23 Published:2016-02-18
  • Corresponding author: Zaiqi Zhang
  • About author:
    Corresponding author: Zhang Zaiqi, Email:
引用本文:

张在其, 幸小亮, 贺凯, 黄雪霜, 杨勇, 张荔铭. 一氧化碳释放分子3对缺氧/复氧心肌细胞内活性氧的影响[J]. 中华卫生应急电子杂志, 2016, 02(01): 33-36.

Zaiqi Zhang, Xiaoliang Xing, Kai He, Xueshuang Huang, Yong Yang, Liming Zhang. Effects of water-soluble CO-releasing molecule on hypoxia/reoxygenation in myocardial cells[J]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2016, 02(01): 33-36.

目的

探讨一氧化碳释放分子3(CORM-3)对缺氧/复氧心肌细胞内活性氧(ROS)产生的影响。

方法

对大鼠H9c2心肌细胞缺氧6 h后,分别以10 μmol/L、50 μmol/L、100 μmol/L、200 μmol/L的CORM-3复氧6 h,检测心肌细胞内ROS量,观察浓度效应。以50 μmol/L CORM-3对缺氧6 h后的H9c2心肌细胞分别进行2 h、4 h、6 h、10 h复氧处理,检测心肌细胞内ROS量,观察时间效应。

结果

当CORM-3浓度为50 μmol/L、100 μmol/L时,心肌细胞内ROS量显著降低,其中50 μmol/L的CORM-3效果更好,即ROS量下降最明显;当CORM-3浓度为200 μmol/L时,心肌细胞内ROS量反而升高。50 μmol/L CORM-3在复氧6 h、10 h都能显著降低H9c2心肌细胞的ROS量,其中复氧6 h的效果更好,即ROS量下降最明显。

结论

适当浓度的CORM-3能显著降低缺氧/复氧心肌细胞内ROS量。CORM-3降低缺氧/复氧心肌细胞内ROS量与复氧时间相关。

Objective

To observe the effects of water-soluble CO-releasing molecules(CORM-3) on reactive oxygen species(ROS)in myocardial cells after hypoxia/reoxygenation.

Methods

After hypoxia for 6h, H9c2 cellswere treated with CORM-3 in 10 μmol/L, 50 μmol/L, 100 μmol/L and 200 μmol/L, respectively, and then the effect was evaluated by detecting the changesof ROS. The content of ROS was determined in H9c2 cell after 2 h, 4 h, 6 h and 10 h for reoxygenation with 50 μmol/L of CORM-3 to evaluate its effect of reoxygenation time.

Results

The content of ROS in 50 μmol/L and 100 μmol/L groupswassignificantly decreased, and the effect was better in 50 μmol/L group. The contentof ROS was significantly decreased in 6h and 10 h reoxygenation groups, and the effect was more significant in 6 h reoxygenation group.

Conclusion

The appropriate concentration of CORM-3 can decrease ROS in hypoxia/reoxygenation of myocardial cells. The effect of CORM-3 in decreasing ROS is correlated with the reoxygenation time.

图1 缺氧6 h对心肌细胞内ROS量的影响
图2 不同浓度CORM-3对缺氧/复氧心肌细胞内ROS的影响
图3 不同复氧时间对缺氧/复氧心肌细胞内ROS的影响
1
Jentzer JC, Chonde MD, Dezfulian C. Myocardial dysfunction and shock after cardiac arrest [J]. Biomed Res Int, 2015: 314796.
2
Patil KD, Halperin HR, Becker LB.Cardiac arrest: resuscitation and reperfusion[J]. Circ Res, 2015, 116(12): 2041-2049.
3
Scolletta S, Donadello K, Santonocito C, et al.Biomarkers as predictors of outcome after cardiac arrest[J]. Expert Rev Clin Pharmacol, 2012, 5(6): 687-699.
4
Wang ZH, Liu JL, Wu L, et al.Concentration-dependent wrestling between detrimental and protective effects of H2O2 during myocardial ischemia/reperfusion[J]. Cell Death Dis, 2014, 5: 1297.
5
Xie J, Zhou X, Hu X, et al.H2O2 evokes injury of cardiomyocytes through upregulating HMGB1[J]. Hellenic J Cardiol, 2014, 55(2): 101-106.
6
Qu D, Han J, Ren H, et al.Cardioprotective effects of astragalin against myocardial ischemia/reperfusion injury in isolated rat heart[J]. Oxid Med Cell Longev, 2016: 8194690.
7
Stein AB, Bolli R, Dawn B, et al.Carbon monoxide induces a late preconditioning-mimetic cardioprotective and antiapoptotic milieu in the myocardium[J]. J Mol Cell Cardiol, 2012, 52(1): 228-236.
8
Zhao S, Lin Q, Li H, et al.Carbon monoxide releasing molecule2 attenuated ischemia/reperfusioninduced apoptosis in cardiomyocytes via a mitochondrial pathway[J]. Mol Med Rep, 2014, 9(2): 754-762.
9
Peers C, Steele DS.Carbon monoxide: a vital signalling molecule and potent toxin in the myocardium[J]. J Mol Cell Cardiol, 2012, 52(2): 359-365.
10
Zhang Y, Liao H, Zhong S, et al.Effect of N-n-butyl haloperidol iodide on ROS/JNK/Egr-1 signaling in H9c2 cells after hypoxia/reoxygenation[J]. Sci Rep, 2015, 5: 11809.
11
Zhao P, Li F, Gao W, et al.Angiotensin1-7 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress by preventing ROS-associated mitochondrial dysfunction and activating the Akt signaling pathway[J]. Acta Histochem, 2015, 117(8): 803-810.
12
Li C, Hu M, Wang Y, et al.Hydrogen sulfide preconditioning protects against myocardial ischemia/reperfusion injury in rats through inhibition of endo/sarcoplasmic reticulum stress[J]. Int J Clin Exp Pathol, 2015, 8(7): 7740-7751.
13
Zhuo X, Xie L, Shi FR, et al. The benefits of respective and combined use of green tea polyphenols and ERK inhibitor on the survival and neurologic outcomes in cardiac arrest rats induced by ventricular fibrillation[J]. Am J Emerg Med, 2016, 34(3): 570-575.
14
Liu B, Qian JM.Cytoprotective role of heme oxygenase-1 in liver ischemia reperfusion injury[J]. Int J Clin Exp Med, 2015, 8(11): 19867-19873.
15
Yao L, Wang P, Chen M, et al.Carbon monoxide-releasing molecules attenuate postresuscitation myocardial injury and protect cardiac mitochondrial function by reducing the production of mitochondrial reactive oxygen species in a rat model of cardiac arrest[J]. J Cardiovasc Pharmacol Ther, 2015, 20(3): 330-341.
16
Sugamura K, Keaney JF.Reactive oxygen species in cardiovascular disease[J]. Free Radic Biol Med, 2011, 51(5): 978-992.
17
Kalogeris T, Bao Y, Korthuis RJ.Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning[J]. Redox Biol, 2014, 2: 702-714.
18
Zuo L, Best TM, Roberts WJ, et al.Characterization of reactive oxygen species in diaphragm[J]. Acta Physiol (Oxf), 2015, 213(3): 700-710.
19
Hao YW, Xu HM, Cheng DY, et al.Role of antioxidant in protecting the biological function of hematopoietic stem cells[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2014, 22(1): 142-147.
20
Zhang L, Li J, Zong L, et al.Reactive oxygen species and targeted therapy for pancreatic cancer[J]. Oxid Med Cell Longev, 2016: 1616781.
21
Yang Y, Karakhanova S, Hartwig W, et al. Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy[J]. J Cell Physiol, 2016.
22
Foresti R, Hammad J, Clark JE, et al.Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule[J]. Br J Pharmacol, 2004, 142(3): 453-460.
23
Long R, Salouage I, Berdeaux A, et al.CORM-3, a water soluble CO-releasing molecule, uncouples mitochondrial respiration via interaction with the phosphate carrier[J]. Biochim Biophys Acta, 2014, 1837(1): 201-209.
24
Pizarro MD, Rodriguez JV, Mamprin ME, et al.Protective effects of a carbon monoxide-releasing molecule (CORM-3) during hepatic cold preservation[J]. Cryobiology, 2009, 58(3): 248-255.
25
Kim SK, Joe Y, Zheng M, et al.Resveratrol induces hepatic mitochondrial biogenesis through the sequential activation of nitric oxide and carbon monoxide production[J]. Antioxid Redox Signal, 2014, 20(16): 2589-2605.
26
Bergstraesser C, Hoeger S, Song H, et al.Inhibition of VCAM-1 expression in endothelial cells by CORM-3: the role of the ubiquitin-proteasome system, p38, and mitochondrial respiration[J]. Free Radic Biol Med, 2012, 52(4): 794-802.
27
Cong B, Xu Y, Sheng H, et al.Cardioprotection of 17beta-estradiol against hypoxia/reoxygenation in cardiomyocytes is partly through up-regulation of CRH receptor type 2[J]. Mol Cell Endocrinol, 2014, 382(1): 17-25.
28
Dong G, Chen T, Ren X, et al.Rg1 prevents myocardial hypoxia/reoxygenation injury by regulating mitochondrial dynamics imbalance via modulation of glutamate dehydrogenase and mitofusin 2[J]. Mitochondrion, 2016, 26: 7-18.
29
Gao Y, Jia P, Shu W, et al.The protective effect of lycopene on hypoxia/reoxygenation-induced endoplasmic reticulum stress in H9C2 cardiomyocytes[J]. Eur J Pharmacol, 2016, 774: 71-79.
[1] 梁珩, 周境, 陈小华, 庄泽航, 胡静, 刘习强. 头颈部混合型Rosai-Dorfman病1例及文献分析[J]. 中华口腔医学研究杂志(电子版), 2015, 09(06): 474-477.
[2] 魏东, 辛运超, 刘博, 容宇, 李彦明, 郝雁冰. PROX1对早期非小细胞肺癌微创切除术后复发的预测意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 494-497.
[3] 陈世平, 朱祎娜, 金宁, 崔进, 秦湧, 沈红. ROSE引导诊断支气管类癌一例[J]. 中华肺部疾病杂志(电子版), 2019, 12(03): 397-399.
[4] 田鹏飞, 王丽娟, 肖圣超. 黄芪总黄酮通过调控miR-190a-5p对缺氧/复氧诱导的心肌细胞损伤的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 346-352.
[5] 邓毕华, 陈晓峰. 干扰FSCN1基因表达对前列腺癌细胞凋亡、活性氧水平影响的研究[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(01): 1-6.
[6] 徐昌林, 程浩, 刘从国, 高涢, 李毅, 乔媛媛, 陈晟. Rosa定位钻孔血肿清除术与经验性定位颅骨钻孔血肿清除术治疗自发性脑出血的疗效对比分析[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 97-101.
[7] 马光铄, 张丙杰, 王嵩. 椎管内原发性孤立性Rosai Dorfman病一例报道[J]. 中华神经创伤外科电子杂志, 2020, 06(04): 251-253.
[8] 刘元钦, 李翠玲, 张磊, 赵传东, 孙帅奇, 孙希炎, 张荣伟, 李博. ROSA机器人在神经外科手术中初步应用体会[J]. 中华神经创伤外科电子杂志, 2019, 05(01): 47-51.
[9] 苏兴奋, 王汉东, 林元相, 陈伏祥. RIP1/RIP3通路介导氯化血红素诱导的HT-22海马神经细胞损伤的研究[J]. 中华神经创伤外科电子杂志, 2018, 04(05): 283-290.
[10] 杨栋栋, 李娜, 王炳旭, 郑秋盟, 陈卓铭. ROSA机器人治疗疑似脑梗死的隐源性脑脓肿一例[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 124-126.
[11] 曾少良, 包权, 赵金义, 于泽霏, 王崇, 邢健. PROSET序列诊断腰椎间盘突出症责任病灶的价值[J]. 中华消化病与影像杂志(电子版), 2022, 12(02): 88-93.
[12] 吕婷婷, 郭钰, 管宇, 刘立新. Fibroscan诊断肝纤维化分期的Meta分析[J]. 中华消化病与影像杂志(电子版), 2017, 07(04): 172-182.
[13] 梁飞, 魏魏, 药泽蓉, 李晓泽. 血红素加氧酶1对人脊髓星形胶质细胞缺氧/复氧损伤的保护作用[J]. 中华临床实验室管理电子杂志, 2018, 06(04): 222-225.
[14] 吴勇, 林伟平, 李斯毅, 杨立文, 刘滢. 糖尿病肾病患者血清白脂素水平与肾功能和糖代谢指标的相关性研究[J]. 中华肥胖与代谢病电子杂志, 2021, 07(02): 104-107.
阅读次数
全文


摘要