1 |
Hoste EA, Bagshaw SM, Bellomo R, et al.Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study[J]. Intensive Care Med, 2015, 41(8): 1411-1423.
|
2 |
Palevsky PM, Liu KD, Brophy PD, et al.KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury[J]. Am J Kidney Dis, 2013, 61(5): 649-672.
|
3 |
Ad-hoc working group of ERBP, Fliser D, Laville M, et al.A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy[J]. Nephrol Dial Transplant, 2012, 27(12): 4263-4272.
|
4 |
Charlton JR, Portilla D, Okusa MD.A basic science view of acute kidney injury biomarkers[J]. Nephrol Dial Transplant, 2014, 29(7): 1301-1311.
|
5 |
Park MY, Choi SJ, Kim JK, et al.Urinary cystatin C levels as a diagnostic and prognostic biomarker in patients with acute kidney injury[J]. Nephrology (Carlton), 2013, 18(4): 256-262.
|
6 |
Shi HP, Xu DM, Wang GE, et al.Prognostic indicators of patients with acute kidney injury in intensive care unit[J]. World J Emerg Med, 2010, 1(3): 209-211.
|
7 |
Hvidberg V, Jacobsen C, Strong RK, et al.The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake[J]. FEBS Lett, 2005, 579(3): 773-777.
|
8 |
Haase M, Bellomo R, Devarajan P, et al.Accuracy of Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Diagnosis and Prognosis in Acute Kidney Injury: A Systematic Review and Meta-analysis [J]. Am J Kidney Dis, 2009, 54(6): 1012-1024.
|
9 |
Nisula S, Yang R, Kaukonen K, et al.The Urine Protein NGAL Predicts Renal Replacement Therapy, but Not Acute Kidney Injury or 90-Day Mortality in Critically Ill Adult Patients [J]. Anesth Analg, 2014, 119(1): 95-102.
|
10 |
Bailly V, Zhang Z, Meier W, et al.Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration[J]. J Biol Chem, , 2002, 277(42): 39739-39748.
|
11 |
Huang Y, Don-Wauchope AC. The clinical utility of kidney injury molecule 1 in the prediction, diagnosis and prognosis of acute kidney injury: a systematic review[J]. Inflamm Allergy Drug Targets, 2011, 10(4): 260-271.
|
12 |
Waring WS, Moonie A. Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury[J]. Clin Toxicol (Phila), 2011, 49(8): 720-728.
|
13 |
Westhuyzen J, Endre ZH, Reece G, et al.Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit[J]. Nephrol Dial Transplant, 2003, 18(3): 543-551.
|
14 |
Yamamoto T, Noiri E, Ono Y, et al.Renal L-type fatty acid—binding protein in acute ischemic injury[J]. J Am Soc Nephrol, 2007, 18(11): 2894-2902.
|
15 |
Liu S, Che M, Xue S, et al.Urinary L-FABP and its combination with urinary NGAL in early diagnosis of acute kidney injury after cardiac surgery in adult patients[J]. Biomarkers, 2013, 18(1): 95-101.
|
16 |
Susantitaphong P, Siribamrungwong M, Doi K, et al.Performance of urinary liver-type fatty acid-binding protein in acute kidney injury: A Meta-analysis[J]. Am J Kidney Dis, 2013, 61(3): 430-439.
|
17 |
Mårtensson J, Jonsson N, Glassford NJ, et al.Plasma endostatin may improve acute kidney injury risk prediction in critically ill patients[J]. Ann Intensive Care, 2016, 6(1): 6.
|
18 |
Boonstra J, Post JA.Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells[J]. Gene, 2004, 337: 1-13.
|
19 |
Kashani K, Al-Khafaji A, Ardiles T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury[J]. Crit Care, 2013, 17(1): R25.
|
20 |
Yang CH, Chang CH, Chen TH, et al.Combination of urinary biomarkers improves early detection of acute kidney injury in patients with heart failure[J]. Circ J, 2016, 80(4): 1017-1023.
|
21 |
McCullough PA, Shaw AD, Haase M, et al.Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference[J]. Contrib Nephrol, 2013, 182: 13-29.
|
22 |
Chawla1 LS, Davison1 DL, Mitchell EB, et al.Development and Standardization of a Furosemide Stress Test to Predict the Severity of Acute Kidney Injury[J]. Critical Care, 2013, 17(5): R207.
|
23 |
Koyner JL, Davison DL, Brasha-Mitchell E, et al.Furosemide Stress Test and Biomarkers for the Prediction of AKI Severity[J]. J Am Soc Nephrol, 2015, 26(8): 2023-2031.
|
24 |
Lim W, Whitlock R, Khera V, et al.Etiology of troponin elevation in critically ill patients[J]. J Crit Care, 2010, 25(2): 322-328.
|
25 |
Goldstein SL, Chawla LS.Renal Angina[J]. Clin J Am Soc Nephrol, 2010, 5(5): 943-949.
|
26 |
Basu RK, Zappitelli M, Brunner L, et al.Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children[J]. Kidney Int, 2014, 85(3): 659-667.
|
27 |
Rossaint J, Zarbock A. Acute kidney injury: definition, diagnosis and epidemiology[J]. Minerva Urol Nefrol, 2016, 68(1): 49-57.
|
28 |
Basu RK, Wang Y, Wong HR, et al.Incorporation of biomarkers with the renal angina index for prediction of severe AKI in critically ill children[J]. Clin J Am Soc Nephrol, 2014, 9(4): 654-662.
|
29 |
Cruz DN, Ferrer-Nadal A, Piccinni P, et al.Utilization of small changes in serum creatinine with clinical risk factors to assess the risk of AKI in critically ill adults[J]. Clin J Am Soc Nephrol, 2014, 9(4): 663-672.
|