切换至 "中华医学电子期刊资源库"

中华卫生应急电子杂志 ›› 2018, Vol. 04 ›› Issue (01) : 33 -44. doi: 10.3877/cma.j.issn.2095-9133.2018.01.007

所属专题: 文献

论著

黄药子中毒导致肝损伤的机制研究
王少珍1, 廖联明2,()   
  1. 1. 3501221 福建中医药大学药学院
    2. 350001 福建医科大学附属协和医院中心实验室
  • 收稿日期:2017-12-04 出版日期:2018-02-18
  • 通信作者: 廖联明

Mechanisms of hepatotoxicity induced by Dioscorea bublifera L. in mice

Shaozhen Wang1, Lianming Liao2,()   

  1. 1. Authors’unit: College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
    2. Central Laboratory, Affiliated Union Hospital of Fujian Medical University, Fuzhou 350001, China
  • Received:2017-12-04 Published:2018-02-18
  • Corresponding author: Lianming Liao
  • About author:
    Corresponding author: Liao Lianming, Email:
引用本文:

王少珍, 廖联明. 黄药子中毒导致肝损伤的机制研究[J]. 中华卫生应急电子杂志, 2018, 04(01): 33-44.

Shaozhen Wang, Lianming Liao. Mechanisms of hepatotoxicity induced by Dioscorea bublifera L. in mice[J]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2018, 04(01): 33-44.

目的

分析中药黄药子水提取物诱导小鼠肝损伤后的基因表达谱,探讨黄药子中毒导致肝损伤的分子作用机制。

方法

SPF级雌性昆明小鼠40只,按随机数字表法分为4组,每组10只。黄药子干预组小鼠分别以低(6 g/kg/d)、中(12 g/kg/d)、高(24 g/kg/d)剂量的黄药子水提取物连续灌胃21 d,正常对照组以同体积纯水灌胃。对比观察4组小鼠的体重增长值、肝脏指数、血清丙氨酸氨基转移酶(ALT)和天冬氨酸转移酶(AST)活性以及肝组织经苏木精-伊红(HE)染色后的病理变化,确定可引起小鼠明显肝损伤的给药剂量。利用RNA-Seq技术分别构建黄药子诱导组(DB组)和对照组(Normal组)小鼠肝脏的数字化基因表达谱(DGE)文库,对比两个DGE文库的差异表达基因,并进行基因本体论(GO)功能注释和京都基因与基因组百科全书(KEGG)通路分析。

结果

与对照组相比,仅高剂量组小鼠出现明显的肝损伤,表现为同时存在体重增长值降低、肝脏指数增高、ALT及AST活性增高(P均<0.05)以及肝组织病理学变化(结构明显破坏、肝索受压紊乱、肝细胞明显肿胀且呈气球样变性、肝小叶内中性粒细胞浸润)。以高剂量组小鼠为DB诱导组,对照组为Normal组,分别测序并构建肝组织的DGE文库:两组分别检测出13 214 893和11 124 617条碱基序列,过滤并剔除带有接头、带有N碱基和测序质量低的reads后分别得到12 819 933和10 786 300条序列。根据所得的两组DEG文库,对比筛选出了312个显著差异表达的基因,其中上调基因148个,下调基因164个。对两组差异表达基因进行聚类分析:两组均表达的高质量序列有9537个,仅在DB组表达的有702个,仅在Nomal组表达的有539个。GO功能注释主要归类为生物学过程和分子功能两个条目。根据KEGG通路分析结果,差异表达的基因主要涉及8条通路:视黄醇代谢通路、花生四烯酸代谢通路、过氧化物酶体增殖物激活受体(PPARs)信号通路、细胞色素P450(CYP450)酶代谢通路、CYP450酶催化的外源物质代谢通路、甾类激素生物合成通路、谷胱甘肽代谢通路、不饱和脂肪酸的生物合成过程。

结论

黄药子的诱导作用严重影响了小鼠肝脏的结构、功能以及相关功能基因的表达;其造成肝损伤的作用机制可能是黄药子在肝内经CYP450酶代谢产生了带有自由基的代谢产物,使胞质膜和细胞器脂质过氧化、机体抗氧化能力减弱,或通过直接影响肝内脂质代谢、增强肝脏脂肪酸氧化反应,从而导致肝损伤。

Objective

The present study was designed to detect the gene expression profiles associtaed with Dioscorea bulbifera L. (DB)-induced liver injury in mice by RNA-sequenceing (RNA-Seq), a next-generation sequencing technology, and analyzed its molecular mechanisms.

Methods

Forty SPF Kunming female mice (4-6 weeks old, 20±2 g)were purchased from Shanghai Slack Laboratory Animal Co. Ltd (animal certification number: 2015000533474). Animals were randomly divided into the control group, high, moderate and low dose groups (n=10 in each group). Mice in the latter three groups were administered intragastrically (i.g.) with DB decoction (24, 12 and 6 g/kg/d, respectively) for 21 consecutive days, while the control group were given equal volume of pure water.After experiment the mice were killed, and their livers were collected. The optimum dose to induce hepatotoxicity was chosed by compared the treated groups and the control group in terms of mice weight gain, liver index, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and liver tissue pathology after H&E staining. Two digital gene expression (DGE) libraries of mice liver in the control and the DB group were created by RNA-seq, following with data analysis and differential gene expression analysis. Finally, Gene ontology (GO) enrichment and kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were implemented on all differentially expressed genes to elucidate their biological functions and processes. The analyses were carried out using the SPSS 20.0 software package, and the results were expressed as ±s. Comparison between two groups was done with independent sample T-test, with P<0.05 considered as statistically significant. Moreover, padj<0.05 was set as the threshold for significantly differential expression in DGE library analysis.

Results

Firstly, obvious liver injury was observed only in the high-dose group, which mainly manifested as decreased weight gain, elevated liver index and serum ALT and AST levels (P<0.05). Histopathological changes were apparent in liver tissue, with destruction of structure, liver cell swelling and cord derangement and infiltration of neutrophilic granulocytes. A total of 13, 214, 693 and 11, 124, 617 raw reads were generated from the control and DB exposure DGE libraries respectively, with 12, 819, 933 and 10, 786, 300 clean reads left for assembly after removing adaptor related, containing N and low quality reads. According to the statistical result of the two DGE libraries, 302 genes were detected differentially expressed with 148 up-regulated and 164 down-regulated. And 9537 high-quality sequences were observed co-expression among two DGE libraries, with 702 in the DB group only and 539 in the normal group only, after clustering analysis. GO annotation there mainly had molecular function and biological process. All differentially expressed genes were mapped to 140 pathways of KEGG database, and the top 8 significantly enriched KEGG pathways were retinol metabolism, arachidonic acid metabolism, PPAR signaling pathway, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, steroid hormone biosynthesis, glutathione metabolism and biosynthesis of unsaturated fatty acids.

Conclusion

The results showed that DB may induce hepatotoxicity by seriously damaging structures and functions of liver and influence related gene expressions. The DGE sequencing technology provides a better way to revealed that the molecular mechanisms of DB induced hepatotoxicity may include generation of oxygen free radical after DB metabolized by the CYP450 enzyme in liver, which resulted in lipid peroxidation of cellular membrane and organelle and decrease of anti-oxidation capacity, or DB may cause liver injury by increasing intrahepatic lipid metabolism and fatty acid oxidation.

图1 不同剂量黄药子灌胃对小鼠体重增长值的影响
图2 不同剂量黄药子灌胃对小鼠肝脏指数的影响
图3 不同剂量黄药子灌胃对小鼠血清ALT和AST酶活性的影响
图4 不同剂量黄药子灌胃对小鼠肝组织形态学变化的影响(HE染色,×200)
图5 正常对照组与黄药子诱导组小鼠的差异基因聚类分析
表1 正常对照组与黄药子诱导组小鼠显著差异表达基因的GO分析统计
GO功能 GO ID padj 基因数 GO分支
生物学过程 GO:0032787 0.000000 35 一元羧酸代谢过程monocarboxylic acid metabolic process
GO:0006631 0.000005 24 脂肪酸代谢过程fatty acid metabolic process
GO:0009615 0.002914 17 病毒免疫反应response to virus
GO:0072330 0.004142 13 一元羧酸生物合成过程monocarboxylic acid biosynthetic process
GO:0010565 0.006300 11 regulation of cellular ketone metabolic process细胞酮代谢过程的调控
GO:0001676 0.006300 9 长链脂肪酸代谢过程long-chain fatty acid metabolic process
GO:0045087 0.006300 21 先天免疫反应innate immune response
GO:0042180 0.007235 13 细胞酮代谢过程cellular ketone metabolic process
GO:0006953 0.007235 6 急性时相反应acute-phase response
GO:0033559 0.007235 9 不饱和脂肪酸代谢过程unsaturated fatty acid metabolic process
GO:0098542 0.014728 18 对其它生物体的防御反应defense response to other organism
GO:0016053 0.014728 14 有机酸生物合成过程organic acid biosynthetic process
GO:0046394 0.014728 14 羧酸生物合成过程carboxylic acid biosynthetic process
GO:0008202 0.015815 14 类固醇代谢过程steroid metabolic process
GO:0034097 0.016716 20 细胞因子反应response to cytokine
GO:0006690 0.018934 8 类花生酸代谢过程icosanoid metabolic process
GO:1901568 0.018934 8 脂肪酸衍生物代谢过程fatty acid derivative metabolic process
GO:0098754 0.018934 5 解毒过程detoxification
GO:0044283 0.019386 19 小分子生物合成过程small molecule biosynthetic process
GO:0051607 0.023839 13 对病毒的防御反应defense response to virus
GO:0035456 0.04351 5 对β干扰素的响应response to interferon-beta
GO:0006805 0.047509 7 异型生物质的代谢过程xenobiotic metabolic process
分子功能 GO:0004497 0.000000 17 甲烷单加氧酶活性monooxygenase activity
GO:0020037 0.000000 16 血红素结合过程heme binding
GO:0046906 0.000000 16 四吡咯结合过程tetrapyrrole binding
GO:0008395 0.000007 10 类固醇羟化酶活性steroid hydroxylase activity
GO:0004027 0.000008 8 酒精性磺基转移酶活性alcohol sulfotransferase activity
GO:0016705 0.000010 16 氧化还原酶活性oxidoreductase activity
GO:0008146 0.000023 8 磺基转移酶活性sulfotransferase activity
GO:0008391 0.000023 8 花生四烯酸单氧酶活性arachidonic acid monooxygenase activity
GO:0005506 0.000023 13 铁离子结合过程iron ion binding
GO:0001517 0.000023 7 N-乙酰氨基葡糖活性N-acetylglucosamine activity
GO:0004394 0.000023 7 硫酸乙酰肝素-2-O-磺基转移酶活性heparan sulfate -2-O-sulfotransferase activity
GO:0016232 0.000023 7 HNK-1-磺基转移酶活性HNK-1 sulfotransferase activity
GO:0017095 0.000023 7 硫酸乙酰肝素-6-O-磺基转移酶活性heparan sulfate 6-O-sulfotransferase activity
GO:0018721 0.000023 7 反式-9R,10R-二氢菲二醇磺基转移酶活性trans-9R,10R-dihydrodiolphenanthrene sulfotransferase activity
GO:0018722 0.000023 7 1-邻二氮菲磺基转移酶活性1-phenanthrol sulfotransferase activity
GO:0018723 0.000023 7 3-邻二氮菲磺基转移酶活性3-phenanthrol sulfotransferase activity
GO:0018724 0.000023 7 4-邻二氮菲磺基转移酶活性4-phenanthrol sulfotransferase activity
GO:0018725 0.000023 7 反式-3,4-二氢菲二醇磺基转移酶活性trans-3,4-dihydrodiolphenanthrene sulfotransferase activity
GO:0018726 0.000023 7 9-邻二氮菲磺基转移酶活性9-phenanthrol sulfotransferase activity
GO:0018727 0.000023 7 2-邻二氮菲磺基转移酶活性2-phenanthrol sulfotransferase activity
GO:0019111 0.000023 7 邻二氮菲磺基转移酶活性phenanthrol sulfotransferase activity
GO:0034930 0.000023 7 1-邻二氮菲磺基转移酶活性1-hydroxypyrene sulfotransferase activity
GO:0050698 0.000023 7 蛋白多糖磺基转移酶活性proteoglycan sulfotransferase activity
GO:0051922 0.000023 7 胆固醇磺基转移酶活性cholesterol sulfotransferase activity
分子功能 GO:0050694 0.000028 7 半乳糖-3-O-磺基转移酶活性galactose 3-O-sulfotransferase activity
GO:0001537 0.000034 7 N-乙酰半乳糖胺-4-O-磺基转移酶活性N-acetylgalactosamine 4-O-sulfotransferase activity
GO:0016782 0.000131 8 磺酸基转移酶活性transferase activity,transferring sulfur-containing groups
GO:0008392 0.000131 7 花生四烯酸表氧化酶活性arachidonic acid epoxygenase activity
GO:0016712 0.000395 7 氧化还原酶活性oxidoreductase activity
GO:0004364 0.002647 5 谷胱甘肽转移酶活性glutathione transferase activity
GO:0070330 0.002647 5 芳香酶活性aromatase activity
GO:0019825 0.004874 6 氧化结合过程oxygen binding
GO:0005504 0.005584 5 脂肪酸结合过程fatty acid binding
GO:0033293 0.006395 6 一元羧酸结合过程monocarboxylic acid binding
GO:0016709 0.008014 5 氧化还原酶活性oxidoreductase activity
GO:0004745 0.028805 3 视黄醇脱氢酶活性retinol dehydrogenase activity
GO:0030881 0.028805 3 β2-微球蛋白结合过程beta-2-microglobulin binding
GO:0001078 0.031889 7 转录抑制因子活性transcriptional repressor activity
GO:1901681 0.033033 10 磺酸化合物结合过程sulfur compound binding
GO:0016290 0.033033 3 棕榈酰辅酶a水解酶活性palmitoyl-CoA hydrolase activity
GO:0001948 0.033366 7 糖蛋白结合过程glycoprotein binding
GO:0038024 0.035606 5 货物受体活性cargo receptor activity
GO:0016765 0.044551 5 烷基或芳基转移酶活性transferase activity,transferring alkyl or aryl (other than methyl) groups
表2 正常对照组与黄药子诱导组小鼠差异表达基因最显著富集的KEGG通路统计表
1
Rêgo Tde S, Ash Lda S, Pessoa L, et al.The intake of yam (Dioscorea bulbifera Linn) attenuated the hyperglycemia and the bone fragility in female diabetic rats[J]. Nutr Hosp, 2014, 29(2): 370-375.
2
Ghosh S, More P, Derle A, et al.Diosgenin from Dioscorea bulbifera: novel hit for treatment of type II diabetes mellitus with inhibitory activity against alpha-amylase and alpha-glucosidase[J]. PLoS One, 2014, 9(9): e106039.
3
Murray RDH, Jorge ZD, Khan NH, et al.Diosbulbin D and 8-epidiosbulbin E acetate, norclerodane diterpenoids from Dioscorea bulbifera tubers[J]. Phytochemistry, 1984, 23(3): 623-625.
4
张利平,周慧萍.黄药子致死亡1例[J].医药导报,2009,28(8):1097.
5
施海优,王志雄.黄药子致肝损害2例[J].浙江中西医结合杂志,2005,15(3):63-64.
6
Wang JM, Sheng YC, Ji LL, et al.Ferulic acid prevents liver injury and increases the anti-tumor effect of diosbulbin B in vivo[J]. J Zhejiang Univ Sci B, 2014, 15(6): 540-547.
7
Niu C, Sheng Y, Yang R, et al.Scutellarin protects against the liver injury induced by diosbulbin B in mice and its mechanism[J]. J Ethnopharmacol, 2015, 164: 301-308.
8
赵艳,朴宏鹰,褚晓杰,等.黄药子与甘草配伍对大鼠肝脏CYP_3A_1、CYP_2E_1 mRNA表达的影响[J].中国中医药科技,2011,18(4):304-305.
9
王秋红,杨欣,王蒙,等.黄芩与黄柏协同保护黄药子致肝毒性的实验研究[J].中国中药杂志,2016,41(5):898-903.
10
王旭东,鞠少卿.新一代测序技术在肿瘤精准医学中的应用[J].中华临床实验室管理电子杂志,2015,3(3):139-145.
11
孟宪欣,肖华胜.新一代测序技术在罕见病致病基因研究中的应用[J].生命科学,2015,27(7):960-967.
12
王曦,汪小我,王立坤,等.新一代高通量RNA测序数据的处理与分析[J].生物化学与生物物理进展,2010,37(8):834-846.
13
Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms[J]. Heredity(Edinb), 2011, 107(1): 1-15.
14
Deng X, Pan L, Miao J, et al.Digital gene expression analysis of reproductive toxicity of benzo[a]pyrene in male scallop chlamys farreri[J]. Ecotoxicol Environ Saf, 2014, 110: 190-196.
15
Hewitt SC, Li L, Grimm SA, et al.Research resource: whole-genome estrogen receptor alpha binding in mouse uterine tissue revealed by ChIP-seq[J]. Mol Endocrinol, 2012, 26(5): 887-898.
16
Chen XH, Ma L, Hu YX, et al.Transcriptome profiling and pathway analysis of hepatotoxicity induced by tris(2-ethylhexyl) trimellitate(TOTM) in mice[J]. Environ Toxicol Pharmacol, 2016, 41: 62-71.
17
Wang J, Liang Q, Ji L, et al.Gender-related difference in liver injury induced by Dioscorea bulbifera L. rhizome in mice[J]. Hum Exp Toxicol, 2011, 30(9): 1333-1341.
18
Wang JM, Ji LL, Branford-White CJ, et al.Antitumor activity of Dioscorea bulbifera L. rhizome in vivo[J]. Fitoterapia, 2012, 83(2): 388-394.
19
Mortazavi A, Williams BA, Mccue K, et al.Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nat Methods, 2008, 5(7): 621-628.
20
Kakuma T, Lee Y, Unger RH.Effects of leptin, troglitazone, and dietary fat on stearoyl CoA desaturase[J]. Biochem Biophys Res Commun, 2002, 297(5): 1259-1263.
21
Ijpenberg A, Jeannin E, Wahli W, et al.Polarity and specific sequence requirements of peroxisome proliferator-activated receptor(PPAR)/retinoid X receptor heterodimer binding to DNA.A functional analysis of the malic enzyme gene PPAR response element[J]. J Biol Chem, 1997, 272(32): 20108-20117.
22
Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease[J]. Nature, 2000, 405(6785): 421-424.
23
Kawano Y, Cohen DE.Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease[J]. J Gastroenterol, 2013, 48(4): 434-441.
24
Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease[J]. J Hepatol, 2015, 62(3): 720-733.
25
Chen C, Wang DW.Cytochrome P450-CYP2 Family-Epoxygenase Role in Inflammation and Cancer[J]. Adv Pharmacol, 2015, 74: 193-221.
26
Mcdonnell AM, Dang CH.Basic review of the cytochrome p450 system[J]. J Adv Pract Oncol, 2013, 4(4): 263-268.
27
Samer CF, Lorenzini KI, Rollason V, et al.Applications of CYP450 testing in the clinical setting[J]. Mol Diagn Ther, 2013, 17(3): 165-184.
28
华碧春,黄智锋,刘娇,等.黄药子与甘草配伍对大鼠肝脏CYP450基因表达的影响[J].福建中医药大学学报,2014,24(1):19-21.
29
Lin D, Li C, Peng Y, et al.Cytochrome p450-mediated metabolic activation of diosbulbin B[J]. Drug Metab Dispos, 2014, 42(10): 1727-1736.
[1] 金小琳, 杨智彬, 詹淑华, 朱丹, 何海英, 殷水泽, 马世武. 1 501例初治住院结核病患者肝功能异常的影响因素[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 394-400.
[2] 习一清, 杨丽洁, 王丹雯, 杨张朔, 冯茂辉, 谢伟. eRF3a/GSPT1在常见肿瘤发生发展过程中的作用[J]. 中华普通外科学文献(电子版), 2019, 13(03): 249-252.
[3] 赵斌, 王翔, 王小龙, 汤嵩, 毛杰. α-倒捻子素抗肿瘤作用机制研究进展[J]. 中华普通外科学文献(电子版), 2019, 13(02): 157-160.
[4] 孙海清, 姜立新, 李宝元, 郑海涛. 分子靶向药物索拉非尼在甲状腺癌的应用进展[J]. 中华普通外科学文献(电子版), 2016, 10(03): 227-230.
[5] 丁超峰, 高晟, 郑树森. 药物性急性肝衰竭行肝移植治疗的预后因素探讨[J]. 中华移植杂志(电子版), 2020, 14(04): 268-271.
[6] 陈凤, 唐怡敏, 黎倩卉, 刘映霞, 王菲. 抗结核药物肝损伤ALDH2基因多态性分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 103-105.
[7] 卢喜, 俞婷婷, 韩志刚. "CYP2D6"基因多态性和NSCLC靶向治疗后肝损伤、皮疹及腹泻的相关性[J]. 中华肺部疾病杂志(电子版), 2020, 13(06): 781-784.
[8] 孟炜, 赵辉, 台艳, 张琪, 易述红, 许赤, 李华, 杨扬, 陈规划. 微小RNA在肝细胞癌中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2015, 04(03): 191-192.
[9] 王磊, 白喜玲, 朱道奇. 西妥昔单抗治疗胃肠道恶性肿瘤的临床疗效观察[J]. 中华结直肠疾病电子杂志, 2014, 03(03): 185-188.
[10] 王笑笑, 胡景卉, 刘金韵, 陈俊飞, 黄京城, 罗先富. 钆塞酸二钠增强磁共振成像肝胆期对比剂摄取相关参数评估药物性肝损伤的价值[J]. 中华消化病与影像杂志(电子版), 2022, 12(04): 204-209.
[11] 任继媛, 刘志敏, 李春星, 徐雪纯, 韩若凌. ARFI定量成像技术评估不同类型肝损伤治疗效果的价值研究[J]. 中华临床医师杂志(电子版), 2022, 16(03): 264-267.
[12] 刘艳, 唐神结. 肠道菌群与抗结核药及其所致肝损伤的相关性研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 82-86.
阅读次数
全文


摘要