切换至 "中华医学电子期刊资源库"

中华卫生应急电子杂志 ›› 2021, Vol. 07 ›› Issue (06) : 338 -341. doi: 10.3877/cma.j.issn.2095-9133.2021.06.003

论著

急救时间对院前心脏骤停患者心肺复苏成功率预测研究
金庸1, 陈刚2, 沈芝红1, 李晓卿1,()   
  1. 1. 315100 浙江宁波,宁波市鄞州第二医院感染科
    2. 315100 浙江宁波,宁波市鄞州区急救中心
  • 收稿日期:2021-11-05 出版日期:2021-12-18
  • 通信作者: 李晓卿
  • 基金资助:
    宁波市科技计划项目(2019A610218)

Prediction of cardiopulmonary resuscitation in patients with pre-hospital cardiac arrest by first-aid time

Yong Jin1, Gang Chen2, Zhihong Shen1, Xiaoqin Li1,()   

  1. 1. Department of Infectious Diseases, Ningbo Yinzhou No.2 Hospital, Ningbo 315100, China
    2. Ningbo Yinzhou District First-Aid Center, Ningbo 315100, China
  • Received:2021-11-05 Published:2021-12-18
  • Corresponding author: Xiaoqin Li
引用本文:

金庸, 陈刚, 沈芝红, 李晓卿. 急救时间对院前心脏骤停患者心肺复苏成功率预测研究[J/OL]. 中华卫生应急电子杂志, 2021, 07(06): 338-341.

Yong Jin, Gang Chen, Zhihong Shen, Xiaoqin Li. Prediction of cardiopulmonary resuscitation in patients with pre-hospital cardiac arrest by first-aid time[J/OL]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2021, 07(06): 338-341.

目的

探究急救时间(响应时间、场景时间和转运时间)对院前心脏骤停患者实施心肺复苏(CPR)成功率预测。

方法

选取2017年12月至2021年8月在院前急救"120"出诊后进行过CPR的331例院前心跳骤停患者为研究对象,以抢救成功与否进行分组。比较两组年龄、性别、病因、心电图类型和急救时间(包括响应时间、场景时间和转运时间),采用二元logistic回归分析CPR成功的影响因素,采用受试者工作特征(ROC)曲线分析响应时间预测CPR成功的敏感度和特异度。

结果

二元logistic回归显示,响应时间为CPR成功的影响因素。响应时间每增加1 min,CPR失败出现的概率增加1.160倍(95%CI:1.089~1.237,Wald=21.011,P<0.05)。ROC曲线分析显示,响应时间的面积为0.779(95% CI: 0.718~0.840),最适切点为16.65 min时,约登指数为0.468,敏感度和特异度分别为69.9%、76.9%。

结论

响应时间可预测CPR的成功率,而场景时间和转运时间不影响CPR的成功率。

Objective

To explore the prediction of the success rate of cardiopulmonary resuscitation in patients with pre-hospital cardiac arrest by first-aid time.

Methods

From December 2017 to August 2021, 331 patients with pre-hospital cardiac arrest who had undergone cardiopulmonary resuscitation after 120 visits in pre-hospital firs-aid were selected as research objects, and were divided into groups according to whether the rescue was successful or not. Two groups were compared in age, gender, etiology, ECG type and emergency response time (including response time, scene time and transport time). The influencing factors of successful cardiopulmonary resuscitation were analyzed by binary logistic regression, and the sensitivity and specificity of response time to predict successful cardiopulmonary resuscitation were analyzed by receiver operating characteristics (ROC) curve.

Results

Binary logistic regression analysis showed that response time was an influencing factor for the success of cardiopulmonary resuscitation. For every 1 minute increase in response time, the probability of cardiopulmonary resuscitation failure increased by 1.160 times (95% CI: 1.089~1.237, Wald=21.011, P<0.05). ROC curve analysis showed that the area under the ROC curve of response time was 0.779(95% CI: 0.718~0.840), the optimal cut-off point was 16.65 min, the Youden index was 0.468, and the sensitivity and specificity were 69.9% and 76.9%, respectively.

Conclusion

Response time can predict the success rate of cardiopulmonary resuscitation, while scene time and transit time do not affect the success rate of cardiopulmonary resuscitation.

表1 CPR成功组和失败组的患者一般资料比较
表2 CPR成功组和失败组的患者病因比较
表3 以CPR成功与否为因变量的二元Logistic回归分析
表4 响应时间对CPR成功的切点预测
1
Gräsner JT,,Lefering R,,Koster RW,et al.Eureca one-27 nations,one europe,one registry:a prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in europe[J].Resuscitation2016(105):188-195.
2
Genbrugge C,,Eertmans W,,Salcido DD.Monitor the quality of cardiopulmonary resuscitation in 2020[J].Curr Opin Crit Care202026(3):219-227.
3
Park HA,,Ahn KO,,Lee EJ,et al.Association between survival and time of on-scene resuscitation in refractory out-of-hospital cardiac arrest:a cross-sectional retrospective study[J].Int J Environ Res Public Health202118(2):496.
4
Considine J,,Gazmuri RJ,,Perkins GD,et al.Chest compression components(rate,depth,chest wall recoil and leaning):a scoping review[J].Resuscitation2020(146):188-202.
5
Merchant RM,,Topjian AA,,Panchal AR,et al.Part 1: executive summary: 2020 american heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J].Circulation2020142(16 suppl 2):337-357.
6
Ong MEH,,Perkins GD,,Cariou A,et al.Out-of-hospital cardiac arrest:prehospital management[J].Lancet2018391(10124):980-988.
7
Rezende PC,,Ribas FF,,Serrano CV,et al.Clinical significance of chronic myocardial ischemia in coronary artery disease patients[J].J Thorac Dis2019113(3):1005-1015.
8
Patil KD,,Halperin HR,,Becker LB.Cardiac arrest:resuscitation and reperfusion[J].Circ Res2015116(12):2041-2049.
9
Choi J,,Shoaib M,,Yin T,et al.Tissue-specific metabolic profiles after prolonged cardiac arrest reveal brain metabolome dysfunction predominantly after resuscitation[J].J Am Heart Assoc20198(17):e012809.
10
Wu MY,,Yiang GT,,Liao WT,et al.Current mechanistic concepts in ischemia and reperfusion injury[J].Cell Physiol Biochem201846(4):1650-1667.
11
Geri G,,Gilgan J,,Wu W,et al.Does transport time of out-of-hospital cardiac arrest patients matter? A systematic review and meta-analysis[J].Resuscitation2017(115):96-101.
12
Shoaib M,,Becker LB.A walk through the progression of resuscitation medicine[J].Ann N Y Acad Sci2020(10):1-14.
13
Ro YS,,Shin SD,,Lee YJ,et al.Effect of dispatcher-assisted cardiopulmonary resuscitation program and location of out-of-hospital cardiac arrest on survival and neurologic outcome[J].Ann Emerg Med201769(1): 52-61.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[3] 陈晓玲, 钟永洌, 刘巧梨, 李娜, 张志奇, 廖威明, 黄桂武. 超高龄髋膝关节术后谵妄及心血管并发症风险预测[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 575-584.
[4] 李霞林, 贺芳. 产后出血风险评估和早期预警系统[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 498-503.
[5] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[6] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[7] 犹成亿, 尤恒, 叶东樊, 张雯, 刘禹, 王仁宇, 苏琳茜, 甘慧, 徐智. 基于3D Res U-Net-Faster RCNN 技术和CT 影像学特征的肺结节性质预测模型的建立[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 673-679.
[8] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[9] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[10] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[11] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[12] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[13] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[14] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
[15] 黄圣楷, 许斌, 苏健, 孙龙. 海南省2010~2020年乙型肝炎流行趋势的时间序列分析及预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 555-561.
阅读次数
全文


摘要