切换至 "中华医学电子期刊资源库"

中华卫生应急电子杂志 ›› 2024, Vol. 10 ›› Issue (01) : 57 -59. doi: 10.3877/cma.j.issn.2095-9133.2024.01.011

综述

NETs在肠道缺血再灌注损伤中的作用及机制研究进展
刘婷婷1, 张嘉伟2, 朴则宇1, 贾中芝2,()   
  1. 1. 116044 辽宁大连,大连医科大学研究生院;213003 江苏常州,常州市第二人民医院介入血管科
    2. 213003 江苏常州,常州市第二人民医院介入血管科
  • 收稿日期:2023-11-11 出版日期:2024-02-18
  • 通信作者: 贾中芝
  • 基金资助:
    中国博士后科学基金(2023M730371); 南京医科大学常州医学中心项目(CMCC202206,CMCB202304)

Research progress on the role and mechanism of NETs in intestinal ischemia-reperfusion injury

Tingting Liu, Jiawei Zhang, Zeyu Piao   

  • Received:2023-11-11 Published:2024-02-18
引用本文:

刘婷婷, 张嘉伟, 朴则宇, 贾中芝. NETs在肠道缺血再灌注损伤中的作用及机制研究进展[J]. 中华卫生应急电子杂志, 2024, 10(01): 57-59.

Tingting Liu, Jiawei Zhang, Zeyu Piao. Research progress on the role and mechanism of NETs in intestinal ischemia-reperfusion injury[J]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2024, 10(01): 57-59.

随着我国人口老龄化趋势越来越严重,肠系膜血管缺血性疾病的发病率逐年升高,已经成为临床上常见的危急重症[1]。在肠系膜血管缺血性疾病救治过程中容易出现肠道缺血再灌注损伤,肠道缺血再灌注损伤不但引起肠粘膜屏障破坏、肠坏死,还会导致全身炎症反应,甚至多器官功能障碍,病死率高达40%~90%[2,3]。因此,肠道缺血再灌注损伤的发病机制及其救治受到了广泛的关注。

[1]
李绍钦,王凯,田丰, 等. 急性闭塞性肠系膜缺血的血管腔内救治研究进展[J]. 手术电子杂志, 2022, 9(4): 34-38.
[2]
Freitas B, Bausback Y, Schuster J, et al. Thrombectomy devices in the treatment of acute mesenteric ischemia: initial single-center experience[J]. Ann Vasc Surg, 2018(51): 124-131.
[3]
梅峻豪,李嘉,李绍钦, 等. 缺血后处理抗组织器官再灌注损伤的机制研究进展[J]. 手术电子杂志, 2022, 9(5): 55-59.
[4]
Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease[J]. Nat Med, 2017, 23(3): 279-287.
[5]
von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo[J]. J Exp Med, 2012, 209(4): 819-835.
[6]
Saffarzadeh M, Juenemann C, Queisser MA, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones[J]. PLoS ONE, 2012, 7(2): e32366.
[7]
Bruschi M, Moroni G, Sinico RA, et al. Neutrophil extracellular traps in the autoimmunity context[J]. Front Med (Lausanne), 2021(8): 614829.
[8]
Tian Z, Zhang Y, Zheng Z, et al. Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation[J]. Cell Host Microbe, 2022, 30(10): 1450-1463.
[9]
Liu XM, Chen QH, Hu Q, et al. Dexmedetomidine protects intestinal ischemia-reperfusion injury via inhibiting p38 MAPK cascades[J]. Exp Mol Pathol, 2020(115): 104444.
[10]
Hayase N, Doi K, Hiruma T, et al. Recombinant thrombomodulin on neutrophil extracellular traps in murine intestinal ischemia-reperfusion[J]. Anesthesiology, 2019, 131(4): 866-882.
[11]
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663): 1532-1535.
[12]
Hidalgo A, Libby P, Soehnlein O, et al. Neutrophil extracellular traps: from physiology to pathology[J]. Cardiovasc Res, 2022, 118(13): 2737-2753.
[13]
Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps[J]. J Cell Biol, 2007, 176(2): 231-241.
[14]
Li P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps[J]. J Exp Med, 2010, 207(9): 1853-1862.
[15]
Douda DN, Khan MA, Grasemann H, et al. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx[J]. Proc Natl Acad Sci U S A, 2015, 112(9): 2817-2822.
[16]
Yousefi S, Mihalache C, Kozlowski E, et al. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps[J]. Cell Death Differ, 2009, 16(11): 1438-1444.
[17]
Herre M, Cedervall J, Mackman N, et al. Neutrophil extracellular traps in the pathology of cancer and other inflammatory diseases[J]. Physiol Rev, 2023, 103(1): 277-312.
[18]
Pilsczek FH, Salina D, Poon KK, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to staphylococcus aureus[J]. J Immunol, 2010, 185(12): 7413-7425.
[19]
Tatsiy O, McDonald PP. Physiological stimuli induce PAD4-dependent, ROS-independent NETosis, with early and late events controlled by discrete signaling pathways[J]. Front Immunol, 2018(9): 2036.
[20]
Adrover JM, McDowell SAC, He XY, et al. NETworking with cancer: the bidirectional interplay between cancer and neutrophil extracellular traps[J]. Cancer Cell, 2023, 41(3): 505-526.
[21]
Iba T, Murai M, Nagaoka I, et al. Neutrophil extracellular traps, damage-associated molecular patterns, and cell death during sepsis[J]. Acute Med Surg, 2013, 1(1): 2-9.
[22]
Chu C, Wang X, Chen F, et al. Neutrophil extracellular traps aggravate intestinal epithelial necroptosis in ischaemia-reperfusion by regulating TLR4/RIPK3/FUNDC1-required mitophagy[J]. Cell Prolif, 2023, 57(1): e13538.
[23]
宋茂力,邹小明. 肠缺血再灌注损伤防治研究的进展[J]. 中国比较医学杂志, 2007, 17(7): 417-420.
[24]
倪睿. 中性粒细胞胞外诱捕网(NETs)在肠缺血-再灌注损伤中的作用研究[D]. 兰州: 兰州大学, 2016.
[25]
王士凯. 中性粒细胞胞外诱捕网(NETs)参与急性肠缺血肠屏障功能损伤中的作用研究[D]. 南京: 南京大学, 2018.
[26]
Wang S, Xie T, Sun S, et al. DNase-1 treatment exerts protective effects in a rat model of intestinal ischemia-reperfusion injury[J]. Sci Rep, 2018, 8(1): 17788.
[27]
de Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and coagulation: a triangular relationship[J]. Cell Mol Immunol, 2018, 16(1): 19-27.
[28]
Zucoloto AZ, Jenne CN. Platelet-neutrophil interplay: insights into neutrophil extracellular trap (NET)-driven coagulation in infection[J]. Front Cardiovasc Med, 2019(6): 85.
[29]
Chu C, Wang X, Yang C, et al. Neutrophil extracellular traps drive intestinal microvascular endothelial ferroptosis by impairing fundc1-dependent mitophagy[J]. Redox Biology, 2023(67): 102906.
[30]
Vollmar B, Menger MD. Intestinal ischemia/reperfusion: microcirculatory pathology and functional consequences[J]. Langenbecks Arch Surg, 2010, 396(1): 13-29.
[31]
Brinkmann V, Laube B, Abu Abed U, et al. Neutrophil extracellular traps: how to generate and visualize them[J]. J Vis Exp, 2010, 24, (36): 1724.
[32]
Zhan Y, Ling Y, Deng Q, et al. HMGB1-mediated neutrophil extracellular trap formation exacerbates intestinal ischemia/reperfusion-induced acute lung injury[J]. J Immunol, 2022, 208(4): 968-978.
[33]
Ascher S, Wilms E, Pontarollo G, et al. Gut microbiota restricts NETosis in acute mesenteric ischemia-reperfusion injury[J]. Arterioscler Thromb Vasc Biol, 2020, 40(9): 2279-2292.
[34]
Kolaczkowska E, Jenne CN, Surewaard BG, et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature[J]. Nat Commun, 2015, 24(36): 1724.
[35]
Boettcher M, Eschenburg G, Mietzsch S, et al. Therapeutic targeting of extracellular DNA improves the outcome of intestinal ischemic reperfusion injury in neonatal rats[J]. Sci Rep, 2017, 7(1): 15377.
[36]
Lin D, Zhang Y, Wang S, et al. Ganoderma lucidum polysaccharide peptides GL-PPSQ(2)alleviate intestinal ischemia-reperfusion injury via inhibiting cytotoxic neutrophil extracellular traps[J]. Int J Biol Macromol, 2023(244): 125370.
[37]
Kono Y, Kawano S, Takaki A, et al. Oxidative stress controlling agents are effective for small intestinal injuries induced by non-steroidal anti-inflammatory drugs[J]. J Gastroenterol Hepatol, 2017, 32(1): 136-145.
No related articles found!
阅读次数
全文


摘要