切换至 "中华医学电子期刊资源库"

中华卫生应急电子杂志 ›› 2025, Vol. 11 ›› Issue (03) : 133 -139. doi: 10.3877/cma.j.issn.2095-9133.2025.03.002

所属专题: 文献

论著

STEMI患者PCI术后院内死亡预测模型构建及验证
张帆娟1,2,3, 韩勇2, 周力2, 曾珊2, 雷景恒2, 李舒雅2, 周岳杰2, 邓哲2,()   
  1. 1515041 广东汕头,汕头大学医学院
    2518035 广东深圳,深圳市第二人民医院(深圳大学第一附属医院)急诊科
    3518118 广东深圳,深圳市第四人民医院急诊科
  • 收稿日期:2025-05-06 出版日期:2025-06-18
  • 通信作者: 邓哲
  • 基金资助:
    深圳市科技计划(KCXFZ2023073109410002); 国家自然科学基金(82471574); 深圳市创伤救治临床研究中心(LCYSSQ20220823091405012); 深圳市高水平医院建设项目深圳市第二人民医院院级临床研究项目(20253357007)

Establishment and validation of a prediction model for in-hospital mortality after PCI in STEMI patients based on emergency indicators

Fanjuan Zhang1,2,3, Yong Han2, Li Zhou2, Shan Zeng2, Jingheng Lei2, Shuya Li2, Yuejie Zhou2, Zhe Deng2,()   

  1. 1Shantou University Medical College, Shantou 515041, China
    2Department of Emergency, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
    3Department of Emergency, Shenzhen Fourth People's Hospital, Shenzhen 518118, China
  • Received:2025-05-06 Published:2025-06-18
  • Corresponding author: Zhe Deng
引用本文:

张帆娟, 韩勇, 周力, 曾珊, 雷景恒, 李舒雅, 周岳杰, 邓哲. STEMI患者PCI术后院内死亡预测模型构建及验证[J/OL]. 中华卫生应急电子杂志, 2025, 11(03): 133-139.

Fanjuan Zhang, Yong Han, Li Zhou, Shan Zeng, Jingheng Lei, Shuya Li, Yuejie Zhou, Zhe Deng. Establishment and validation of a prediction model for in-hospital mortality after PCI in STEMI patients based on emergency indicators[J/OL]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2025, 11(03): 133-139.

目的

构建一种基于急诊常用指标的新型预测模型,用于评估急诊就诊并接受经皮冠状动脉介入术(PCI)的ST段抬高型心肌梗死(STEMI)患者的院内死亡风险。

方法

回顾性分析2020年12月26日至2021年12月25日期间在韩国延世大学医学院急诊科和深圳市第四人民医院急诊科(2021年1月1日至2021年12月31日期间)接受PCI治疗的842例STEMI患者临床资料。延世大学503例作为训练集、251例作为内部验证集,深圳市第四人民医院88例作为外部验证集。采用LASSO回归和非条件Logistic逐步回归方法筛选预测变量,建立预测模型并以列线图形式呈现。通过ROC曲线、校准曲线和临床决策曲线评价模型的区分度、校准度及临床应用价值,并进行内部和外部验证。

结果

延世大学医学院最终纳入754例接受PCI术的STEMI患者,34例发生了院内死亡。深圳市第四人民医院纳入88例患者,院内死亡6人。经LASSO回归和非条件Logistic逐步回归方法,筛选出左室射血分数、收缩压、高密度脂蛋白胆固醇、肌酸激酶同工酶、脑尿钠肽、年龄、心率7个预测因素,构建STEMI患者PCI术后院内死亡的预测模型:logit(P)=-2.85810-0.10535×左室射血分数+0.00551×肌酸激酶同工酶-0.00002×脑尿钠肽+0.07765×年龄-0.01181×收缩压-0.03742×高密度脂蛋白胆固醇+0.01314×心率。该模型在内部验证集和外部验证集的ROC曲线下面积(AUC)分别为0.88和0.83,显示出良好的预测性能。校准曲线提示其院内死亡预测值与实测值有较好的一致性(HL检验,P=0.648),临床决策曲线则表明模型具有良好的校准度和临床应用价值。

结论

STEMI患者PCI术后院内死亡预测模型基于急诊科易获取的临床指标,具有良好的区分度、校准度和临床应用价值。

Objective

To develop a novel predictive model based on commonly used emergency indicators for assessing the risk of in-hospital mortality among ST-segment elevation myocardial infarction (STEMI) patients who underwent percutaneous coronary intervention (PCI) at the emergency department.

Methods

A retrospective analysis was conducted based on the clinical data of 842 STEMI patients who received PCI treatment (from Dec. 26, 2020 to Dec. 25, 2021) at the emergency departments of Yonsei University College of Medicine and the Fourth People's Hospital of Shenzhen (From Jan. 1, 2021 to Dec. 31, 2021). 503 cases from Yonsei University were used as the training set, 251 cases as the internal validation set, and 88 cases from the Fourth People's Hospital of Shenzhen as the external validation set. LASSO regression and unconditional logistic stepwise regression were employed to screen predictive variables, to establish a prediction model, and to present it in the form of nomograms. The model's discrimination, calibration, and clinical applicability were evaluated using ROC curves, calibration curves, and clinical decision curves, respectively, followed by internal and external validation.

Results

A total of 842 STEMI patients after PCI were included, with 40 cases of in-hospital deaths. Using LASSO regression and unconditional logistic stepwise regression methods, seven predictive factors were identified: left ventricular ejection fraction, systolic blood pressure, high-density lipoprotein cholesterol, creatine kinase isoenzyme, brain natriuretic peptide, age, and heart rate. A prediction model of in-hospital mortality after PCI in STEMI patients on basis of these factors were constructed as follows: logit (P)=-2.85810-0.10535×left ventricular ejection fraction+0.00551×creatine kinase isoenzyme-0.00002×brain natriuretic peptide+0.07765×age-0.01181×systolic blood pressure-0.03742×high-density lipoprotein cholesterol+ 0.01314×heart rate. The model demonstrated good predictive performance with ROC curve areas (AUC) of 0.88,0.83 for internal and external validation sets, respectively. Calibration curves indicated good agreement between predicted and observed in-hospital mortality values (HL test, P=0.648), and clinical decision curves showed that the model had good calibration and clinical applicability.

Conclusion

Based on easily accessible clinical indicators from the emergency department, the novel in-hospital mortality prediction model for STEMI patients after PCI demonstrates good discrimination, calibration, and clinical applicability.

图1 使用LASSO回归模型选择风险预测因子注:a为25个预测因子的LASSO系数曲线。依据给定的对数(lambda)序列,绘制出相应的系数剖面图。在图中,针对通过10折交叉验证所确定的lambda值作出垂直线标记,此时最佳lambda值(即0.005)可使8个预测因子的系数保持非零状态;b为依据最小化准则开展10折交叉验证,以此在LASSO模型中精准选定最佳预测因子(λ)。接受者操作特征曲线下面积与对数(λ)的关系图
表1 使用Logistic逐步回归模型选择的变量
图2 急性STEMI患者PCI术院内死亡风险的列线图注:Points为分值,Linear Predictor为线性预测值;1 mmHg=0.133 kPa
表2 预测模型预测院内死亡的能力及验证
图3 预测模型的校准曲线
图4 预测模型的临床决策曲线
[1]
Wang C, Wang C, Liu M, et al. Temporal and spatial trends of ischemic heart disease burden in chinese and subgroup populations from 1990 to 2016: socio-economical data from the 2016 global burden of disease study[J]. BMC Cardiovasc Disord, 2020, 20(1): 243.
[2]
Pozzi M, Flagiello M, Armoiry X, et al. Extracorporeal life support in the multidisciplinary management of cardiogenic shock complicating acute myocardial infarction[J]. Catheter Cardiovasc Interv, 2020, 95(3): E71-77.
[3]
Ibanez B, James S, Agewall S, et al. 2017 esc guidelines for the management of acute myocardial infarction in patients presenting with st-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with st-segment elevation of the european society of cardiology (ESC)[J]. Eur Heart J, 2018, 39(2): 119-177.
[4]
Vogel B, Claessen BE, Arnold SV, et al. St-segment elevation myocardial infarction[J]. Nat Rev Dis Primers, 2019, 5(1): 40.
[5]
Morrow DA, Antman EM, Parsons L, et al. Application of the timi risk score for st-elevation mi in the national registry of myocardial infarction 3[J]. Jama, 2001, 286(11): 1356-1359.
[6]
Granger CB, Goldberg RJ, Dabbous O, et al. Predictors of hospital mortality in the global registry of acute coronary events[J]. Arch Intern Med, 2003, 163(19): 2345-2353.
[7]
Addala S, Grines CL, Dixon SR, et al. Predicting mortality in patients with st-elevation myocardial infarction treated with primary percutaneous coronary intervention (pami risk score) [J]. Am J Cardiol, 2004, 93(5): 629-632.
[8]
De Luca G, Suryapranata H, van T HA, et al. Prognostic assessment of patients with acute myocardial infarction treated with primary angioplasty: implications for early discharge[J]. Circulation, 2004, 109(22): 2737-2743.
[9]
Halkin A, Singh M, Nikolsky E, et al. Prediction of mortality after primary percutaneous coronary intervention for acute myocardial infarction: the cadillac risk score[J]. J Am Coll Cardiol, 2005, 45(9): 1397-1405.
[10]
You JS, Cho J, Shin HJ, et al. Baseline egfr cutoff for increased risk of post-contrast acute kidney injury in patients undergoing percutaneous coronary intervention for st-elevation myocardial infarction in the emergency department[J]. Plos One, 2023, 18(10): e293598.
[11]
Ozaki Y, Tobe A, Onuma Y, et al. Cvit expert consensus document on primary percutaneous coronary intervention (pci) for acute coronary syndromes (acs) in 2024[J]. Cardiovasc Interv Ther, 2024, 39(4): 335-375.
[12]
D'Ascenzo F, Biondi-Zoccai G, Moretti C, et al. Timi, grace and alternative risk scores in acute coronary syndromes: a meta-analysis of 40 derivation studies on 216,552 patients and of 42 validation studies on 31,625 patients[J]. Contemp Clin Trials, 2012, 33(3): 507-514.
[13]
Kawamura Y, Yoshimachi F, Murotani N, et al. Comparison of mortality prediction by the grace score, multiple biomarkers, and their combination in all-comer patients with acute myocardial infarction undergoing primary percutaneous coronary intervention[J]. Intern Med, 2023, 62(4): 503-510.
[14]
De Luca G, Ernst N, Zijlstra F, et al. Preprocedural timi flow and mortality in patients with acute myocardial infarction treated by primary angioplasty[J].J Am Coll Cardiol,2004,43(8):1363-1367.
[15]
Wu C, Hannan EL, Walford G, et al. A risk score to predict in-hospital mortality for percutaneous coronary interventions[J]. J Am Coll Cardiol, 2006, 47(3): 654-660.
[16]
Al'Aref SJ, Singh G, van Rosendael AR, et al. Determinants of in-hospital mortality after percutaneous coronary intervention: a machine learning approach[J]. Am Heart Assoc, 2019, 8(5): e11160.
[17]
Yadav M, Palmerini T, Caixeta A, et al. Prediction of coronary risk by syntax and derived scores: synergy between percutaneous coronary intervention with taxus and cardiac surgery[J]. J Am Coll Cardiol, 2013, 62(14): 1219-1230.
[18]
Tan L, Xu Q, Shi R. A nomogram for predicting hospital mortality in intensive care unit patients with acute myocardial infarction[J]. Int J Gen Med, 2021, 9(14): 5863-5877.
[19]
Goriki Y, Tanaka A, Nishihira K, et al. A novel predictive model for in-hospital mortality based on a combination of multiple blood variables in patients with st-segment-elevation myocardial infarction [J]. J Clin Med, 2020, 9(3): 852-859.
[20]
Weintraub WS, Grau-Sepulveda MV, Weiss JM, et al. Prediction of long-term mortality after percutaneous coronary intervention in older adults: results from the national cardiovascular data registry[J]. Circulation, 2012, 125(12): 1501-1510.
[21]
Hannan EL, Farrell LS, Walford G, et al. The new york state risk score for predicting in-hospital/30-day mortality following percutaneous coronary intervention[J]. Jacc Cardiovasc Interv, 2013, 6(6): 614-622.
[1] 明昊, 宋宏萍, 白誉誉, 党晓智, 赵阳, 程燕妮, 王琪, 肖迎聪. 自动乳腺超声联合临床病理特征预测Luminal B 型乳腺癌术后复发风险的临床研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 337-347.
[2] 李培真, 刘海亮, 李大伟, 贾昊, 张泽瑾, 刘力维, 申传安. 重度烧伤患者发生早期急性肾损伤危险因素分析及预测模型建立[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 199-205.
[3] 赵艾红, 唐为娟, 傅俊建, 徐湘. 重度肺炎患儿感染后闭塞性细支气管炎列线图预测模型的构建及验证[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(02): 77-83.
[4] 赵晨皓, 张序东, 杨浚沫, 周何. 血清肿瘤标志物对结直肠癌患者术后复发的预测效能研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 467-470.
[5] 袁强, 张华宇, 闫璋哲, 朱含放, 陈光, 孙亮, 吕远, 陈纲, 赵锁. cN0峡部偏侧甲状腺乳头状癌中央区淋巴结转移的术前预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 333-336.
[6] 朱宗恒, 张志火. 甲状腺乳头状癌对侧中央区淋巴结转移的危险因素分析及预测模型构建[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 337-340.
[7] 沈丹枫, 常鹏, 陆颖超, 徐红星, 顾强. PCT、CRP对急性胆管炎严重程度的早期预测价值及列线图模型构建[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 192-195.
[8] 张志昱, 张凡, 周奇, 欧阳骏, 林宇鑫, 张学锋. 术前炎性指标对肾透明细胞癌WHO/ISUP病理分级的预测价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 323-328.
[9] 张鸣凤, 侯莉莉, 党萍, 马清艳, 康冠楠, 李志强, 陈倩倩, 张盼盼, 陈莹莹, 张楠楠. 复治耐多药/利福平耐药肺结核复发影响因素探讨[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 406-410.
[10] 尤宁, 秦卫, 徐斌, 彭一莲, 杨小玉. 慢性阻塞性肺疾病并发重症社区获得性肺炎预后风险预测[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 479-482.
[11] 张宏斌, 杨振宇, 谭凯, 刘冠, 尚磊, 杜锡林. 不可切除肝癌转化治疗后手术的影响因素及预测模型构建[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 387-394.
[12] 周艳, 周泽阳, 程欣萌, 何月娥, 李祥勇, 吴勇. 结直肠癌患者早期造口并发症预测模型的构建与验证[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 242-250.
[13] 王秋艳, 杨爱民, 程春, 周洋. 基于食管癌术后吻合口瘘危险因素建立风险预测列线图模型及临床决策曲线分析[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 229-234.
[14] 方海丽, 王俊, 栾琳. HBV 相关慢加急性肝衰竭患者诱发肝性脑病风险列线图模型构建与验证应用[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 144-148.
[15] 李雯婷, 高聪, 廖晓凌. 卒中后认知障碍的危险因素及临床预测模型的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(02): 81-86.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?