切换至 "中华医学电子期刊资源库"

中华卫生应急电子杂志 ›› 2025, Vol. 11 ›› Issue (03) : 140 -146. doi: 10.3877/cma.j.issn.2095-9133.2025.03.003

所属专题: 文献

论著

动态中性粒细胞与淋巴细胞比值与重症肺炎患者发生弥散性血管内凝血的相关性
沈婉林, 刘福菁, 马娜, 张合, 顾体军()   
  1. 213000 江苏常州,南京医科大学第三附属医院(常州市第二人民医院)急诊科
  • 收稿日期:2025-03-31 出版日期:2025-06-18
  • 通信作者: 顾体军

Relationship between the dynamic neutrophil-to-lymphocyte ratio and the occurrence of disseminated intravascular coagulation in patients with severe pneumonia

Wanlin Shen, Fujing Liu, Na Ma, He Zhang, Tijun Gu()   

  1. Department of Emergency, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou 213000, China
  • Received:2025-03-31 Published:2025-06-18
  • Corresponding author: Tijun Gu
引用本文:

沈婉林, 刘福菁, 马娜, 张合, 顾体军. 动态中性粒细胞与淋巴细胞比值与重症肺炎患者发生弥散性血管内凝血的相关性[J/OL]. 中华卫生应急电子杂志, 2025, 11(03): 140-146.

Wanlin Shen, Fujing Liu, Na Ma, He Zhang, Tijun Gu. Relationship between the dynamic neutrophil-to-lymphocyte ratio and the occurrence of disseminated intravascular coagulation in patients with severe pneumonia[J/OL]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2025, 11(03): 140-146.

目的

探讨中性粒细胞与淋巴细胞比值(NLR)动态变化与重症肺炎患者发生弥散性血管内凝血(DIC)的关系。

方法

回顾性分析2019年1月至2023年12月常州市第二人民医院住院的重症肺炎患者340例,其中男性264例,女性76例;年龄28~101岁,平均(73.56±13.65)岁。根据并发症分为非DIC组(n=271)和DIC组(n=69)。采用广义估计方程(GEE)分析两组患者NLR的时间单独效应和组间主效应,Logistic回归分析不同时间点NLR对DIC的影响,绘制受试者工作特征(ROC)曲线评估动态NLR对重症肺炎患者发生DIC的预测价值。

结果

(1)GEE结果显示,DIC患者和非DIC患者在进入急诊室时NLR差异无统计学意义,但是随着时间推移,DIC患者NLR逐渐增大,非DIC患者NLR逐渐减小(P<0.001)。(2)多因素Logistic回归分析显示,校正混杂因素后入院24 h、48 h及72 h后NLR均为重症肺炎并发DIC的风险因素(P<0.05)。(3)ROC曲线分析显示,入院72 h后NLR(AUC=0.75)较入院24 h后(AUC=0.60)和入院48 h后(AUC=0.63)预测价值高。

结论

持续的高炎症反应打击诱发重症肺炎患者发生DIC。NLR动态变化有助于早期识别重症肺炎发生DIC的风险。

Objective

To investigate the relationship between dynamic changes in neutrophil-to-lymphocyte ratio (NLR) and the occurrence of disseminated intravascular coagulation (DIC) in patients with severe pneumonia.

Methods

A total of 340 patients with severe pneumonia hospitalized in Changzhou Second People's Hospital from January 2019 to December 2023 were retrospectively analyzed, and the cohort comprised 264 males and 76 females, aged 28 to 101 years, with a mean age of 73.56±13.65 years. These patients were divided into non-DIC (n=271) and DIC (n=69) groups based on complications. The generalized estimation equation was used to analyze the time-alone effect and the intergroup main effect of NLR in two groups; Logistic regression was used to analyze the effect of NLR on DIC at different time points, and the receiver operating characteristic (ROC) curve was plotted to evaluate the predictive value of dynamic NLR in the development of DIC in patients with severe pneumonia.

Results

The results of the generalized estimation equation showed that there was no statistical difference in NLR between DIC patients and non-DIC patients when they entered the emergency room, but the NLR of DIC patients gradually increased with time, while the NLR of non-DIC patients gradually decreased (P<0.001). Multivariate Logistic regression analysis showed that NLR 24 hours, 48 hours and 72 hours after admission were all risk factors for severe pneumonia complicated with DIC (P<0.05). ROC curve analysis showed that NLR (AUC=0.75) at 72 hours after admission was higher than that at 24 hours (AUC=0.60) and 48 hours (AUC=0.63).

Conclusions

Persistent hyperinflammatory response leads to DIC in patients with severe pneumonia. Dynamic changes in NLR can help in early identification of the risk of DIC in severe pneumonia.

表1 两组患者基线资料比较[例(%)]
组别 例数 年龄(岁) 男性 高血压 糖尿病 冠心病 房颤 肝炎史 慢性肾功能不全 脑梗史
非DIC组 271(79.71) 76(70.00,83.00) 210(77.49) 164(60.51) 95(35.06) 36(13.28) 26(9.59) 4(1.48) 26(9.59) 75(27.68)
DIC组 69(20.29) 74(63.50,83.00) 54(78.26) 39(56.52) 17(24.63) 9(13.04) 11(15.94) 0(0.00) 4(5.80) 18(26.09)
Z/t/χ2   -1.27 0.02 0.36 2.70 0.00 2.28 0.99 0.07
P   >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
组别 例数 肿瘤史 心功能不全 慢性阻塞性肺部 呼吸(次/min) 心率(次/min) 体温(℃) 外周收缩压(mmHg,±s 机械通气 血管活性药物
非DIC组 271 38(14.02) 28(10.33) 40(14.76) 23(18,31) 105(89,120) 37.2(36.50,38.20) 130.88±28.46 155(57.20) 113(41.70)
DIC组 69 14(20.29) 7(10.14) 9(13.04) 25(20,32) 106(89,128) 36.7(36.25,37.85) 121.04±30.41 56(81.16) 54(78.26)
Z/t/χ2   1.67 0.00 0.13 1.71 0.95 -2.98 2.43 13.41 29.42
P   >0.05 >0.05 >0.05 >0.05 >0.05 <0.05 <0.05 <0.05 <0.001
组别 例数 住院天数(d) SOFA(分) CRP(mg/L) ESR(mm/h) PCT(ng/mL) CURB-65(分) 革兰阳性菌 革兰阴性菌 其他微生物
非DIC组 271 14(9,20) 6(3,9) 75.20(34.74,140.78) 49(26,71) 1.0(0.25,6.23) 3(2,3) 102(37.64) 114(42.07) 35(12.92)
DIC组 69 9(5,14) 9(6,11) 98.68(25.95,153.57) 54(32,78) 0.55(0.22,3.36) 3(3,4) 20(28.99) 34(49.28) 13(18.84)
Z/t/χ2   -4.36 -6.35 0.88 -1.62 -1.34 1.40 1.79 1.16 1.59
P   <0.001 <0.001 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
图1 DIC组和非DIC组的NLR动态变化以及两组患者NLR差值变化注:a为DIC组和非DIC组的NLR动态变化,b为两组患者NLR差值变化;NLR为中性粒细胞与淋巴细胞比值
表2 NLR动态变化的GEE分析[MQ1Q3)]
表3 不同时间NLR的单因素Logistic回归分析
表4 不同时间NLR的多因素Logistic回归分析
图2 不同时间NLR 72 h预测重症肺炎DIC的ROC曲线注:NLR为中性粒细胞与淋巴细胞比值
表5 不同时间NLR预测DIC的ROC曲线分析
图3 NLR 72 h不同分层患者的DIC发生率及从急诊和门诊到72 h后NLR升高的患者和降低的患者发生DIC的率注:a为NLR 72 h不同分层患者的DIC发生率,b为从急诊和门诊到72 h后NLR升高的患者和降低的患者发生DIC的率;DIC为弥散性血管内凝血
表6 NLR 72 h分层后对重症肺炎发生DIC的风险因素回归分析
[1]
Jain S, Self WH, Wunderink RG, et al. Community-acquired pneumonia requiring hospitalization among U.S. Adults[J]. N Engl J Med, 2015, 373(5): 415-427.
[2]
Martin-Loeches I, Torres A, Nagavci B, et al. ERS/ESICM/ESCMID/ALAT guidelines for the management of severe community-acquired pneumonia[J]. Eur Respir J, 2023, 61(4): 2200735.
[3]
Denkinger CM, Grant AD, Denkinger M, et al. Increased multi-drug resistance among the elderly on admission to the hospital—a 12-year surveillance study[J]. Arch Gerontol Geriatr, 2013, 56(1): 227-230.
[4]
Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Crit Care Med, 2021, 49(11): e1063-e1143.
[5]
Calabretta D, Martìn-Loeches I, Torres A. New guidelines for severe community-acquired pneumonia[J]. Semin Respir Crit Care Med,2024,45(2):274-286.
[6]
Niederman MS, Torres A. Severe community-acquired pneumonia[J]. Eur Respir Rev, 2022, 31(166): 220123.
[7]
Murata A, Okamoto K, Mayumi T, et al. The recent time trend of outcomes of disseminated intravascular coagulation in Japan: an observational study based on a national administrative database[J]. J Thromb Thrombolysis, 2014, 38(3): 364-371.
[8]
Iba T, Helms J, Connors JM, et al. The pathophysiology, diagnosis, and management of sepsis-associated disseminated intravascular coagulation[J]. J Intensive Care, 2023, 11(1): 24.
[9]
中华医学会血液学分会血栓与止血学组.弥散性血管内凝血诊断中国专家共识(2017年版)[J].中华血液学杂志, 2017, 38(5): 361-363.
[10]
Ogura H, Gando S, Saitoh D, et al. Epidemiology of severe sepsis in Japanese intensive care units: a prospective multicenter study[J]. J Infect Chemother, 2014, 20(3): 157-162.
[11]
Tekin A, Wireko FW, Gajic O, et al. The neutrophil/lymphocyte ratio and outcomes in hospitalized patients with community-acquired pneumonia: a retrospective cohort study[J]. Biomedicines, 2024, 12(2): 260.
[12]
Buonacera A, Stancanelli B, Colaci M, et al. Neutrophil to lymphocyte ratio: an emerging marker of the relationships between the immune system and diseases[J]. Int J Mol Sci, 2022,23(7): 3636.
[13]
Lee H, Kim I, Kang BH, et al. Prognostic value of serial neutrophil-to-lymphocyte ratio measurements in hospitalized community-acquired pneumonia[J]. PloS One, 2021,16(4): e0250067.
[14]
Kuikel S, Pathak N, Poudel S, et al. Neutrophil-lymphocyte ratio as a predictor of adverse outcome in patients with community-acquired pneumonia: a systematic review[J]. Health Sci Rep, 2022, 5(3): e630.
[15]
Meng Y, Zhang L, Huang M, et al. Blood heparin-binding protein and neutrophil-to-lymphocyte ratio as indicators of the severity and prognosis of community-acquired pneumonia[J]. Respir Med, 2023(208):107144.
[16]
Unar A, Bertolino L, Patauner F, et al. Pathophysiology of disseminated intravascular coagulation in sepsis: a clinically focused overview[J]. Cells, 2023, 12(17): 2120.
[17]
Unar A, Bertalino L, Patauner F, et al, Durante-mangoni e. decoding sepsis-induced disseminated intravascular coagulation: a comprehensive review of existing and emerging therapies[J]. J Clin Med,2023,12(19):6128.
[18]
Metlay JP, Waterer GW, Long AC, et al. Diagnosis and Treatment of adults with community-acquired pneumonia. an official clinical practice guideline of the american thoracic society and infectious diseases society of america[J]. Am J Respir Crit Care Med, 2019, 200(7): e45-e67.
[19]
Taylor FB Jr, Toh CH, Hoots WK, et al. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation[J]. Thromb Haemost, 2001, 86(5): 1327-1330.
[20]
冯国双.重复测量数据的常用统计分析方法[J].中华预防医学杂志, 2020, 54(7): 804-812.
[21]
Vagionas D, Papadakis DD, Politou M, et al. Thromboinflammation in sepsis and heparin: a review of literature and pathophysiology[J]. In Vivo, 2022, 36(6): 2542-2557.
[22]
Liufu R, Chen Y, Wan XX, et al. Sepsis-induced coagulopathy: the different prognosis in severe pneumonia and bacteremia infection patients[J].Clin Appl Thromb Hemos, 2023(29): 10760296231219249.
[23]
Schrottmaier WC, Assinger A. The concept of thromboinflammation [J]. Hamostaseologie, 2024, 44(1): 21-30.
[24]
罗翠竹.血栓弹力图在评价脓毒症患者凝血功能及预后中的应用价值[D].广州:南方医科大学, 2022.
[25]
Jacobi J. The pathophysiology of sepsis-2021 update: Part 1, immunology and coagulopathy leading to endothelial injury[J]. Am J Health Syst Pharm,2022,79(5):329-337.
[26]
Drăgoescu AN, Pădureanu V, Stănculescu AD, et al. Neutrophil to lymphocyte ratio (NLR)-a useful tool for the prognosis of sepsis in the ICU[J]. Biomedicines, 2021, 10(1): 75.
[27]
Kong W, He Y, Bao H, et al. Diagnostic value of neutrophil-lymphocyte ratio for predicting the severity of acute pancreatitis: a meta-analysis[J]. Dis Markers, 2020(2020): 9731854.
[28]
Anoun J, Ajmi M, Riahi S, et al. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios in bacterial infections: contributions to diagnostic strategies in a tertiary care hospital in tunisia[J]. F1000Research, 2024(13): 978.
[29]
Wirjopranoto S. Comparison between neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio as predictors of mortality on fournier's gangrene cases[J]. Indian J Urol, 2023, 39(2): 121-125.
[30]
Williams B, Zou L, Pittet JF. Sepsis-induced coagulopathy: a comprehensive narrative review of pathophysiology, clinical presentation, diagnosis, and management strategies[J]. Anesth Analg, 2024, 138(4): 696-711.
[31]
何习斯,陈燕宏,文莎,等.降钙素原、乳酸联合APACHEⅡ评分对脓毒性休克合并弥散性血管内凝血的预测价值[J].解放军医学杂志, 2020, 45(10): 1057-1061.
[32]
Noubouossie DF, Reeves BN, Strahl BD, et al. Neutrophils: back in the thrombosis spotlight[J]. Blood, 2019, 133(20): 2186-2197.
[33]
Rangaswamy C, Englert H, Deppermann C, et al. Polyanions in coagulation and thrombosis: focus on polyphosphate and neutrophils extracellular traps[J]. Thromb Haemost, 2021, 121(8): 1021-1030.
[34]
Bianchini EP, Razanakolona M, Helms J, et al. The proteolytic inactivation of protein z-dependent protease inhibitor by neutrophil elastase might promote the procoagulant activity of neutrophil extracellular traps in sepsis[J]. Thromb Haemost, 2022, 122(4): 506-516.
[35]
Cui XJ, Xie B, Zhu KW, et al. Prognostic value of the platelet, neutrophil, monocyte, basophil, and eosinophil to lymphocyte ratios in patients with severe community-acquired pneumonia (SCAP)[J]. Sci Rep, 2024, 14(1): 30406.
[1] 张国卿, 武华红, 朱春梅. 炎症及营养指标在儿童鼻病毒重症肺炎中的预测价值研究[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(03): 215-221.
[2] 张烈, 严一核, 杜洁瑜. 分泌型白细胞蛋白酶抑制因子对无创呼吸机治疗重症肺炎患者的预测效能[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 301-306.
[3] 高娟, 郑枫, 张晴, 朱琳娜, 王娴. 三种常用临床指标在重症肺炎患者液体管理监测中的比较研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 204-210.
[4] 王利军, 张红红, 龙春欢. 重症肺炎患者肠道微生物群落的宏基因组学研究及其对抗菌药物疗效的预测价值[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(06): 360-368.
[5] 徐保平, 彭怀文, 喻怀斌, 王晓涛. 新型冠状病毒肺炎继发糖尿病酮症酸中毒合并肝门静脉积气一例[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 250-255.
[6] 孙一茜, 孔祥静, 付启梅, 王荣花, 张静文. 多模式肺康复训练系统在重症肺炎患者康复期中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 472-474.
[7] 朱丹丹, 杨云, 胡忠, 韩明丽, 彭广艳, 郝钊. 类鼻疽菌感染重症肺炎临床特征及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 289-294.
[8] 严专, 高素敏, 赵红梅, 顾立志, 常青. 血清sTREM-1、VCAM-1 水平对重症肺炎并发呼吸衰竭患者预后的分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 98-103.
[9] 何敏, 孙一茜, 高永霞, 郭媛, 蔡金霞, 倪媛, 胡莹莹, 吴玉娇. 经鼻高流量吸氧结合叩背排痰在重症肺炎中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 168-170.
[10] 吴瑶, 李雅雯, 唐甜甜. 重症肺炎并发抗生素相关性腹泻伴巨细胞病毒性结肠炎一例[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 191-193.
[11] 刘雯, 赵明栋, 夏伟, 潘以雄. 不同剂量比阿培南治疗重症肺炎的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 789-792.
[12] 于燕兴, 梅喜庆, 刘凤娟, 于梓薇, 许亚慧, 徐飞. 高通量测序重症肺炎肺泡灌洗液病原体的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 785-788.
[13] 李芝朋, 周明虎, 董大红, 许正峰. 早期血小板动态分析对重症肺炎预后的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 475-477.
[14] 吴洁柔, 王琴, 张静, 周耿标, 赖芳, 韩云. 体质量指数、血清白蛋白联合mNUTRIC评分对重症肺炎预后的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 392-396.
[15] 徐双喜, 杨玉坤, 姜海波. 重症肺炎HE4表达水平及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 300-302.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?