切换至 "中华医学电子期刊资源库"

中华卫生应急电子杂志 ›› 2025, Vol. 11 ›› Issue (05) : 299 -309. doi: 10.3877/cma.j.issn.2095-9133.2025.05.009

论著

脓毒症相关的铁死亡研究知识图谱分析
马涛1, 赵焓宇1, 王毅1, 高晓明2, 于湘友1,()   
  1. 1830054 新疆维吾尔自治区乌鲁木齐,新疆医科大学第一附属医院重症医学中心
    2830054 新疆维吾尔自治区乌鲁木齐,新疆医学院动物模型研究重点实验室
  • 收稿日期:2025-03-31 出版日期:2025-10-18
  • 通信作者: 于湘友
  • 基金资助:
    国家自然科学基金(82460372)

Sepsis-related ferroptosis: a knowledge map analysis

Tao Ma1, Hanyu Zhao1, Yi Wang1, Xiaoming Gao2, Xiangyou Yu1,()   

  1. 1Intensive Care Medicine Center, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
    2Key Laboratory of Medical Animal Model Research in Xinjiang, Urumqi 830054, China
  • Received:2025-03-31 Published:2025-10-18
  • Corresponding author: Xiangyou Yu
引用本文:

马涛, 赵焓宇, 王毅, 高晓明, 于湘友. 脓毒症相关的铁死亡研究知识图谱分析[J/OL]. 中华卫生应急电子杂志, 2025, 11(05): 299-309.

Tao Ma, Hanyu Zhao, Yi Wang, Xiaoming Gao, Xiangyou Yu. Sepsis-related ferroptosis: a knowledge map analysis[J/OL]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2025, 11(05): 299-309.

目的

分析脓毒症背景下"铁死亡"概念自出现至今的研究热点、发展趋势及各个国家、作者及机构之间的合作交流情况。

方法

本研究运用文献计量学的方法借助CiteSpace、VOSviewer、RStudio、Excel等软件多角度分析脓毒症领域中铁死亡研究的关键词、国家及机构、作者、文献共被引等信息并以知识图谱的形式进行展现。

结果

在Web of Science的核心合集中共收集324篇文献,1 378个关键词。其中发文量排名前5的国家依次是中国、美国、德国、泰国、法国;关键词共现排序前3的是炎症、氧化应激和急性肺损伤;所有关键词聚类Modularity Q值为0.7483,Silhouette S值0.9067;关键词突现中最具时间依赖性的是"Iron overload",近期热点关键词有"autophagy"、"septic shock"、"infammation";文献共被引分析中以Dixon、Stockwell团队引用率最高;国家及机构分析可知中国及美国在该领域的研究热度最高;文章被引次数最多的期刊是"Free radical biology and medicine",期刊之间链接强度最高的是"Frontiers in immunology",发文数量最多的期刊是"International immunopharmacology"。

结论

脓毒症相关的铁死亡研究热点为抑制铁死亡的发生、循坏系统功能障碍、脏器的损伤及保护、炎症反应、氧化应激等方向;这个领域中,中国与美国的学术影响力最大且差距正在缩小,但中国科研机构在国内和国际的合作网络尚未建立,需继续努力探寻跨学科、跨机构合作的新道路。

Objective

To analyze the research hotspots and development trends of the concept of 'ferroptosis’ in the context of sepsis, as well as the cooperation and exchange between countries, authors and institutions.

Methods

We used the method of bibliometrics to analyze the keywords, countries and institutions, authors, literature co-citation and other information of ferroptosis research in the field of sepsis from multiple perspectives with the help of CiteSpace, VOSviewer, RStudio, Excel and other software, and showed it in the form of knowledge map.

Results

A total of 324 articles and 1378 keywords were collected in the core collection of Web of Science. The top five countries in terms of the number of publications were China, the United States, Germany, Thailand, and France. The top three keywords were inflammation, oxidative stress and acute lung injury. All keywords clustering modularity Q value was 0.7483, and Silhouette S value was 0.9067; the most time-dependent keyword was 'iron overload’, and the recent hot keywords were 'autophagy’, 'septic shock’ and 'inflammation’. In the literature co-citation analysis, the Dixon and Stockwell teams had the highest citation rate. According to the analysis of countries and institutions, China and the United States had the highest research heat in this field; the journal with the highest number of citations was 'Free Radical Biology and Medicine’, the journal with the highest link strength between journals was 'Frontiers in Immunology’, and the journal with the highest number of publications was 'International Immunopharmacology’.

Conclusion

The research hotspots of sepsis-related ferroptosis are to inhibit the occurrence of ferroptosis, circulatory system dysfunction, organ damage and protection, inflammatory response, oxidative stress, etc. In this field, China and the United States have the largest academic influence and the gap is narrowing. However, the domestic and international cooperation network of Chinese scientific research institutions has not yet been established, and efforts need to continue to explore new ways of interdisciplinary and inter-institutional cooperation.

图1 Web of Science核心合集中脓毒症铁死亡相关研究发文趋势
表1 Web of Science核心合集中脓毒症铁死亡相关研究发文量
图2 脓毒症铁死亡研究发文量排名前5的国家及时间分布图
图3 脓毒症铁死亡相关文献中关键词共现图(频次>5)
表2 脓毒症铁死亡相关文献中的高频关键词(频次>10)
图4 脓毒症铁死亡相关文献中关键词聚类图
图5 有关脓毒症铁死亡的关键词突现分析图
图6 有关脓毒症铁死亡的文献共被引分布图(共被引频次>20次)注:图中每个节点代表一篇文献,其中最小的节点代表引用次数为20次,节点越大,代表引用次数越多,球体颜色代表研究领域接近。
图7 有关脓毒症铁死亡影响力前10的文献三域图注:CR为参考文献,红色越深代表被引用次数越多;AU为作者,面积越大,颜色越红,代表发文量越多;DE为关键词,面积越大,代表出现次数越多
表3 脓毒症铁死亡影响力前10的文献
文献编号 文献 引用次数 关联强度
1 Dixon SJ,Lemberg KM,Lamprecht MR,et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell,2012. 149(5):1060-1072. 129 725
2 Li N,Wang W,Zhou H,et al. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury[J]. Free Radic Biol Med,2020(160):303-318. 100 577
3 Singer M,Deutschman CS,Seymour CW,et al. The third international consensus definitions for sepsis and septic shock(Sepsis-3)[J]. JAMA,2016,315(8):801-810. 83 447
4 Yang WS,SriRamaratnam R,Welsch ME,et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell,2014,156(1-2):317-331. 52 357
5 Wang C,Yuan W,Hu A,et al. Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury[J].Mol Med Rep,2020,22(1):175-184. 41 318
6 Fang X,Wang H,Han D,et al. Ferroptosis as a target for protection against cardiomyopathy[J].Proc Natl Acad Sci U S A,2019,116(7):2672-2680. 46 295
7 Friedmann Angeli JP,Schneider M,Proneth B,et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J].Nat Cell Biol,2014,16(12):1180-1191. 41 294
8 Jiang X,Stockwell BR,Conrad M. Ferroptosis:mechanisms,biology and role in disease[J].Nat Rev Mol Cell Biol,2021,22(4):266-282. 57 289
9 Wei S,Bi J,Yang L,et al. Serum irisin levels are decreased in patients with sepsis,and exogenous irisin suppresses ferroptosis in the liver of septic mice[J].Clin Transl Med,2020,10(5):e173. 38 286
10 Stockwell BR,Friedmann Angeli JP,Bayir H,et al. Ferroptosis:a regulated cell death nexus linking metabolism,redox biology,and disease[J]. Cell,2017,171(2):273-285. 46 284
图8 研究脓毒症铁死亡的主要机构及院校
表4 研究脓毒症铁死亡的主要机构及院校表
图9 刊登脓毒症铁死亡研究领域文章的主要期刊汇总图
[1]
Dolma S, Lessnick SL, Hahn WC, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells[J]. Cancer Cell, 2003, 3(3): 285-296.
[2]
Dixon SJ, Lemberg KM, Lamprecht MR,et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
[3]
Tan Y, Dong X, Zhuang D, et al. Emerging roles and therapeutic potentials of ferroptosis: from the perspective of 11 human body organ systems[J]. Mol Cell Biochem, 2023, 478(12): 2695-2719.
[4]
Li S, Han Q, Liu C, et al. Role of ferroptosis in chronic kidney disease[J]. Cell Commun Signal, 2024, 22(1): 113.
[5]
Su Y, Jiao Y, Cai S, et al. The molecular mechanism of ferroptosis and its relationship with Parkinson's disease[J]. Brain Res Bull, 2024(213): 110991.
[6]
Yang Y, Lin Y, Han Z, et al. Ferroptosis: a novel mechanism of cell death in ophthalmic conditions[J]. Front Immunol, 2024(15): 1440309.
[7]
Zhou Q, Tao C, Yuan J, et al. Ferroptosis, a subtle talk between immune system and cancer cells: To be or not to be?[J]. Biomed Pharmacother, 2023(165): 115251.
[8]
Ru Q, Li Y, Xie W, et al. Fighting age-related orthopedic diseases: focusing on ferroptosis[J]. Bone Res, 2023, 11(1): 12.
[9]
Allam R, Kumar SV, Darisipudi MN, et al. Extracellular histones in tissue injury and inflammation[J]. J Mol Med (Berl), 2014, 92(5): 465-472.
[10]
Jiang C, Shi Q, Yang J, et al. Ceria nanozyme coordination with curcumin for treatment of sepsis-induced cardiac injury by inhibiting ferroptosis and inflammation[J]. J Adv Res, 2024(63): 159-170.
[11]
Jiang Y, Jiang ZT, Zhao G, et al. LCN2 depletion aggravates sepsis-induced liver injury by regulating PTGS2-dependent ferroptosis[J]. Int J Med Sci, 2024, 21(14): 2770-2780.
[12]
Wei S, Bi J, Yang L, et al. Serum irisin levels are decreased in patients with sepsis, and exogenous irisin suppresses ferroptosis in the liver of septic mice[J]. Clin Transl Med, 2020, 10(5): e173.
[13]
Zheng Q, Xing J, Li X, et al. PRDM16 suppresses ferroptosis to protect against sepsis-associated acute kidney injury by targeting the NRF2/GPX4 axis[J]. Redox Biol, 2024(78): 103417.
[14]
Yang X, Duan H, Li S, et al. Yap1 alleviates sepsis associated encephalopathy by inhibiting hippocampus ferroptosis via maintaining mitochondrial dynamic homeostasis[J]. J Cell Mol Med, 2024, 28(19): e70156.
[15]
Ling X, Wei S, Ling D, et al. Irf7 regulates the expression of Srg3 and ferroptosis axis aggravated sepsis-induced acute lung injury[J]. Cell Mol Biol Lett, 2023, 28(1): 91.
[16]
于湘友,马涛,黄玮玮,等. Nrf2/GPX4介导的铁死亡在脓毒症肠道损伤中的作用[J].中华危重病急救医学, 2023, 35(11): 1188-1194.
[17]
Oami T, Imaeda T, Nakada TA, et al. Association of intensive care unit case volume with mortality and cost in sepsis based on a Japanese nationwide medical claims database study[J]. Cureus, 2024, 16(7): e65697.
[18]
Li N, Wang W, Zhou H, et al. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury[J]. Free Radic Biol Med, 2020(160): 303-318.
[19]
Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci USA, 2019, 116(7): 2672-2680.
[20]
Wang C, Yuan W, Hu A, et al. Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury[J]. Mol Med Rep, 2020, 22(1): 175-184.
[21]
Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12): 1180-1191.
[22]
Wei S, Bi J, Yang L, et al. Serum irisin levels are decreased in patients with sepsis, and exogenous irisin suppresses ferroptosis in the liver of septic mice[J]. Clin Transl Med, 2020, 10(5): e173.
[23]
Wickert A, Schwantes A, Fuhrmann DC, et al. Inflammation in a ferroptotic environment[J]. Front Pharmacol, 2024(15): 1474285.
[24]
Co HKC, Wu CC, Lee YC, et al. Emergence of large-scale cell death through ferroptotic trigger waves[J]. Nature, 2024, 631(8021): 654-662.
[25]
Ming Y,Huang M, Huang Y, et al. Nanozyme-enhanced ferroptosis for cancer treatment[J]. Mater Chem Front, 2024(8): 1685-1702.
[1] 罗凯航, 卿城, 张世超, 周嘉, 李文娟, 胡志国, 李丹, 王城, 周超琪, 杨钰婷, 黄舒颖, 曾振国. 山蜡梅挥发油通过调控线粒体相关内质网膜减轻脂多糖诱导的小肠隐窝上皮细胞炎症损伤[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(04): 265-273.
[2] 龙飞宇, 祝鑫蕊, 伍佳莉, 晏丕军, 王茂华. 乌司他丁通过抑制NOD样受体热蛋白结构域相关蛋白3炎症小体激活保护脓毒症相关肺损伤[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(03): 189-196.
[3] 陶然, 尹聪, 叶少波, 杨新平, 田洁, 熊丽红, 吴瑾滨, 梅红兵. 应用多学科管理预防日间经皮肾镜碎石取石术后尿源性脓毒症的发生[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 615-621.
[4] 王杰艳, 胡博文, 梁辉. 细胞死亡在肾缺血再灌注损伤中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 653-657.
[5] 薛国强, 赵立明, 刘学军, 任玉林, 晏发隆, 杨晨, 杨嘉祺, 王永翔, 康印东. 甘草酸对尿源性脓毒症相关急性肾损伤的作用机制研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 498-507.
[6] 李兴华, 李桂仙, 刘颖, 耿红玉, 顾莹, 韩聪聪. 西维来司他钠联合甲泼尼龙琥珀酸钠、气道压力释放通气治疗对脓毒症所致急性呼吸窘迫综合征患者肺功能的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 789-795.
[7] 赵才林, 向青, 钱航, 施雯, 邱凌霄, 王斌. 基于生物信息学解析急性肺损伤/急性呼吸窘迫综合征铁死亡枢纽基因及其与免疫分型的关系[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 503-509.
[8] 周玲, 肖颖, 李秋诗, 陈兆毅, 李琪, 吴园明. 亚麻木酚素通过circRNA HIPK3影响非小细胞肺癌A549 细胞凋亡及铁死亡的机制研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 362-368.
[9] 陈明付, 王庆惠, 纪辉涛, 陈银珍, 余小娟, 陈怀章, 赵虎, 王瑜. 基于CiteSpace 对结直肠癌铁死亡研究现状的可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 179-189.
[10] 李恺, 敖强国, 陶亚茹, 李青霖. 脓毒症相关急性肾损伤患者临床特点及90天预后影响因素分析[J/OL]. 中华肾病研究电子杂志, 2025, 14(05): 248-253.
[11] 陈亚磊, 卢年芳, 刘安琪, 刘虎南, 赵培宏, 陈健文. 终末期肾病合并脓毒症患者临床特征及预后影响因素分析[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 196-203.
[12] 李菲, 郭晓夏, 郑悦, 郑爔, 李鑫成, 李文雄. 他汀类药物对甘油三酯葡萄糖指数增高的脓毒症相关急性肾损伤患者预后的影响[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 68-76.
[13] 王浩, 黄咪, 李雪琴. SIGIRR、IL-1、Treg/Th17、NLR与急性胰腺炎继发脓毒症病情程度及预后的关联性[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 250-255.
[14] 宁雯琪, 张永利. 脓毒症心肌病的研究进展:基础、临床与展望[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 461-466.
[15] 白霖果, 秦康杰, 郑杰, 李俊杰, 梅鸿, 刘鑫鑫, 覃松, 冯帮海, 余琨. 连翘酯苷A通过激活PPAR-γ抑制中性粒细胞胞外捕获网形成减轻脓毒症相关急性呼吸窘迫综合征[J/OL]. 中华卫生应急电子杂志, 2025, 11(03): 180-187.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?