切换至 "中华医学电子期刊资源库"

中华卫生应急电子杂志 ›› 2025, Vol. 11 ›› Issue (06) : 380 -387. doi: 10.3877/cma.j.issn.2095-9133.2025.06.012

论著

大黄附子汤调控SLC7A11/GPX4轴抑制H/R诱导的Caco-2细胞铁死亡的作用研究
徐凤华1, 路童2, 朱连连3,4, 王欢3,4, 白黎智5, 宋轶5, 战丽彬3,4, 路晓光5,()   
  1. 1276003 山东临沂,临沂市人民医院急诊科
    2110032 辽宁沈阳,辽宁中医药大学附属医院急诊科
    3110847 辽宁沈阳,辽宁中医药大学中医脏象理论及应用教育部重点实验室
    4110847 辽宁沈阳,辽宁中医药大学中医脾脏象现代研究辽宁省重点实验室
    5116001 辽宁大连,大连大学附属中山医院急诊科
  • 收稿日期:2025-08-17 出版日期:2025-12-18
  • 通信作者: 路晓光
  • 基金资助:
    国家自然科学基金项目(81673801;81473512); 辽宁省中医药创新团队(LNZYYCXTD-CCCX-003)

Mechanism of Dahuang Fuzi decoction inhibiting ferroptosis induced by hypoxia and reoxygenation in Caco-2 cells via SLC7A11/GPX4 pathway

Fenghua Xu1, Tong Lu2, Lian lian Zhu3,4, Huan Wang3,4, Lizhi Bai5, Yi Song5, Libin Zhan3,4, Xiaoguang Lu5,()   

  1. 1Department of Emergency Medicine, Linyi People's Hospital, Linyi 276003, China
    2Department of Emergency Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
    3Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
    4Liaoning Key Laboratory for TCM Spleen-Viscera-State Modern Research, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
    5Department of Emergency Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
  • Received:2025-08-17 Published:2025-12-18
  • Corresponding author: Xiaoguang Lu
引用本文:

徐凤华, 路童, 朱连连, 王欢, 白黎智, 宋轶, 战丽彬, 路晓光. 大黄附子汤调控SLC7A11/GPX4轴抑制H/R诱导的Caco-2细胞铁死亡的作用研究[J/OL]. 中华卫生应急电子杂志, 2025, 11(06): 380-387.

Fenghua Xu, Tong Lu, Lian lian Zhu, Huan Wang, Lizhi Bai, Yi Song, Libin Zhan, Xiaoguang Lu. Mechanism of Dahuang Fuzi decoction inhibiting ferroptosis induced by hypoxia and reoxygenation in Caco-2 cells via SLC7A11/GPX4 pathway[J/OL]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2025, 11(06): 380-387.

目的

基于溶负荷转运体家族7成员11(SLC7A11)/谷胱甘肽过氧化物酶4(GPX4)信号轴探讨大黄附子汤(DHFZT)对缺氧复氧条件诱导下的人结直肠腺癌细胞(Caco-2细胞)的调控机制。

方法

首先将20只SD雄性大鼠采用随机对数法分为大黄附子汤含药血清组和空白组,每组各10只,经过连续灌胃处理3 d后采血制备含药血清。利用氧剥夺/复氧方法诱导肠上皮细胞H/R模型,将Caco-2细胞置于三气培养箱中12 h缺氧处理,再置于二氧化碳培养箱2 h作复氧处理;CCK8法检测大黄附子汤含药血清对Caco-2细胞增殖的影响;将Caco-2细胞分为空白组、模型(H/R)组、铁死亡抑制剂(Lip-1)组、大黄附子汤含药血清低、中、高剂量组(5%、10%、20%)。空白组细胞正常培养;其他组经H/R后,铁死亡抑制剂组给予Lip-1处理24 h,大黄附子汤含药血清低、中、高浓度组分别加入5%、10%、20%DHFZT含药血清处理24 h。各组细胞干预后,透射电镜观察细胞形态和线粒体超微结构,ELISA法检测Caco-2细胞内丙二醛(MDA)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH)含量,荧光显微镜检测细胞内活性氧(ROS)水平,亚铁嗪比色法检测亚铁离子(Fe2+)含量,蛋白免疫印迹法(Western Blot)检测细胞内组蛋白去乙酰化酶3(HDAC3),SLC7A11和GPX4蛋白的表达情况。

结果

透射电镜结果显示,空白组Caco-2细胞形态规整,含有丰富的椭圆形线粒体,线粒体内嵴结构基本清晰。H/R组Caco-2细胞膜完整性破坏、表面轮廓不规则、胞质内线粒体变形,线粒体膜结构不清晰,线粒体内嵴减少或消失。DHFZT组细胞内线粒体形态规整、排列较齐。ELISA检测结果显示,H/R组MDA、Fe2+水平高于空白组(12.28±1.70比9.11±0.82,q=6.47,P<0.05;0.23±0.02比0.06±0.03,q=13.21,P<0.05),H/R组SOD、GSH水平低于空白组(9.09±0.41比12.66±0.66,q=4.79,P<0.05;3.33±0.22比7.51±0.46,q=21.31,P<0.05)。10%DHFZT组MDA、Fe2+水平低于H/R组(9.55±0.52比12.28±1.70,q=5.57,P<0.05;q=13.30,P<0.05);10%DHFZT组SOD、GSH水平高于H/R组(13.37±1.22比9.09±0.41,q=5.73,P<0.05;7.31±0.33比3.33±0.22,q=20.28,P<0.05)。H/R组ROS水平高于空白组(91.67±7.37比28.48±2.17,q=28.37,P<0.05);Lip-1组ROS水平低于H/R组(44.03±3.64比91.67±7.37,q=21.39,P<0.05);10%DHFZT组ROS水平低于H/R组(55.92±2.51比91.67±7.37,q=16.05,P<0.05)。Western Blot结果显示,H/R组SLC7A11、GPX4水平低于空白组(q=4.69、5.38,P<0.05),H/R组HDAC3水平高于空白组(q=81.13,P<0.05)。Lip-1组SLC7A11、GPX4水平高于H/R组(q=11.05、28.76,P<0.05),H/R组HDAC3水平低于H/R组(q=121.00,P<0.05)。10%DHFZT组SLC7A11、GPX4水平高于H/R组(q=26.79、32.21,P<0.05),10%DHFZT组HDAC3水平低于H/R组(q=59.42,P<0.05)。

结论

大黄附子汤含药血清对缺氧复氧诱导后的Caco-2细胞具有保护作用,其作用机制可能是通过调控HDAC3表达进而激活SLC7A11/GPX4信号通路,减轻脂质过氧化积累,从而抑制铁死亡发生。

Objective

To elucidate the regulatory mechanism of Dahuang Fuzi decoction (DHFZT) on hypoxia/reoxygenation (H/R)-injured intestinal epithelial cells through the solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling axis.

Methods

Twenty male Sprague-Dawley rats were randomized into DHFZT drug-containing serum (n=10) and control serum (n=10) groups. Drug-containing serum was prepared following 3-day oral gavage. Caco-2 cells were subjected to 12-hour hypoxia (1% O2) and 2-hour reoxygenation (21% O2) to establish the H/R model. Cell viability was quantified using CCK-8 assay. Six experimental groups were designed: Control (normal culture), H/R model, H/R+ferroptosis inhibitor Lip-1 (1μM,24h), and H/R+DHFZT serum (5%, 10%, 20%, 24h). Mitochondrial ultrastructure was analyzed by transmission electron microscopy. Oxidative stress markers (MDA, SOD, GSH), ROS, and Fe2+levels were measured via ELISA, DCFH-DA fluorescence, and ferrozine assay, respectively. Protein expression of HDAC3, SLC7A11, and GPX4 was assessed by Western blot.

Results

Under transmission electron microscope, Caco-2 cells in the blank group exhibited regular morphology with abundant oval-shaped mitochondria and relatively clear mitochondrial cristae structures. In contrast, the H/R group showed disrupted cell membrane integrity, irregular surface contours, deformed cytoplasmic mitochondria, obscured mitochondrial membrane structures, and reduced or disappeared cristae. Mitochondria in the DHFZT group maintained regular morphology and orderly arrangement. Biochemical assays revealed that MDA and Fe2+ levels in the H/R group were significantly higher than those in the blank group (12.28±1.70 vs 9.11±0.82, q=6.47, P<0.05; 0.23±0.02 vs 0.06±0.03, q=13.21, P<0.05), while SOD and GSH levels were lower (9.09±0.41 vs 12.66±0.66, q=4.79, P<0.05; 3.33±0.22 vs 7.51±0.46, q=21.31, P<0.05). The 10% DHFZT group demonstrated reduced MDA and Fe2+levels compared to the H/R group (9.55±0.52 vs 12.28±1.70, q=5.57, P < 0.05; q=13.30, P<0.05) and elevated SOD and GSH levels (13.37±1.22 vs 9.09±0.41, q=5.73, P<0.05; 7.31±0.33 vs 3.33±0.22, q=20.28, P<0.05). ROS levels were significantly higher in the H/R group than in the blank group (91.67±7.37 vs 28.48±2.17, q=28.37, P<0.05), while the Lip-1 group and 10% DHFZT group showed reduced ROS levels compared to the H/R group (44.03±3.64 vs 91.67±7.37, q=21.39, P<0.05; 55.92±2.51 vs 91.67±7.37, q=16.05, P<0.05). Western blot analysis indicated that SLC7A11 and GPX4 levels in the H/R group were lower than those in the blank group (q=4.69, 5.38, P<0.05), whereas HDAC3 levels were higher (q=81.13, P<0.05). Both Lip-1 and 10% DHFZT groups exhibited upregulated SLC7A11 and GPX4 levels (q=11.05, 28.76 and q=26.79, 32.21, respectively; P<0.05) and downregulated HDAC3 levels (q=121.00 and q=59.42, P<0.05) compared to the H/R group.

Conclusion

Dahuang Fuzi decoction-containing serum exerts a protective effect on hypoxia-reoxygenation (H/R)-induced Caco-2 cells injury. The underlying mechanism may involve the regulation of HDAC3 expression, which subsequently activates the SLC7A11/GPX4 signaling pathway, thereby alleviating lipid peroxidation accumulation and inhibiting ferroptosis.

图1 DHFZT含药血清对正常Caco-2细胞存活率的影响注:DHFZT为大黄附子汤;a为正常条件下DHFZT作用于Caco-2细胞24 h存活率,b为正常条件下DHFZT作用于Caco-2细胞48 h存活率
图2 DHFZT含药血清对H/R造模后Caco-2细胞存活率的影响注:DHFZT为大黄附子汤;a为DHFZT含药血清对H/R处理后Caco-2细胞24 h存活率,b为DHFZT含药血清对H/R处理后Caco-2细胞48 h存活率;与空白组比较:*P<0.05,与空白组比较:***P<0.0001
表1 正常条件下大黄附子汤作用于Caco-2细胞存活率比较[(%),±s]
表2 缺氧复氧条件下大黄附子汤作用于Caco-2细胞存活率比较[(%),±s]
图3 铁死亡抑制剂Lip-1对Caco-2细胞存活率的影响注:Lip-1为铁死亡抑制剂
图4 DHFZT含药血清对Caco-2细胞线粒体形态的影响(透射电镜,×10 000)注:DHFZT为大黄附子汤;a为空白组,b为H/R组,c为Lip-1组,d为5%DHFZT组,e为10%DHFZT组,f为20%DHFZT组
图5 DHFZT含药血清对MDA、SOD、GSH、Fe2+含量的影响注:DHFZT为大黄附子汤;a为MDA含量,b为SOD含量,c为GSH含量,d为Fe2+含量;DHFZT为大黄附子汤;与空白组比较:****P<0.0001,与H/R组比较:###P<0.0001
表3 各组细胞MDA、SOD、GSH、Fe2+水平比较(n=3,±s
图6 DHFZT含药血清对ROS水平的影响(荧光显微镜,×10)注:DHFZT为大黄附子汤;a为Control组,b为H/R组,c为Lip-1组,d为5%DHFZT组,e为10%DHFZT组,f为20%DHFZT组
图7 DHFZT含药血清对HDAC3、SLC7A11、GPX4蛋白表达水平的影响注:DFHZT为大黄附子汤
图8 各组细胞HDAC3、SLC7A11、GPX4蛋白表达灰度值注:DHFZT为大黄附子汤;*P<0.05,##P<0.01a为HDAC3蛋白的Western Blotting灰度值,b为SLC7A11蛋白的Western Blotting灰度值,c为GPX4蛋白的Western Blotting灰度值
[1]
Luan X, Chen P, Miao L, et al. Ferroptosis in organ ischemia-reperfusion injuries: recent advancements and strategies[J]. Mol Cell Biochem, 2025, 480(1): 19-41.
[2]
Zheng J, Conrad M. Ferroptosis: when metabolism meets cell death[J]. Physiol Rev, 2025, 105(2): 651-706.
[3]
Fu C, Wu Y, Liu S, et al. Rehmannioside a improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia[J]. J Ethnopharmacol, 2022(289): 115021.
[4]
宋轶,唐远莉,路晓光,等.大黄附子汤对重症急性胰腺炎早期大鼠结肠黏液层作用的研究[J].中华实验外科杂志, 2023, 40(1): 35-39.
[5]
杨轶仑,路晓光,战丽彬,等.大黄附子汤对重症急性胰腺炎早期大鼠肠黏膜机械屏障的影响及其意义[J].中华实验外科杂志, 2021, 38(1): 47-52.
[6]
康新,梁正凯,路晓光,等.大黄附子汤对重症急性胰腺炎肠黏膜上皮细胞线粒体超微结构和离子泵的影响[J].中华实验外科杂志, 2015, 32(1): 41-44.
[7]
Nair A, Morsy MA, Jacob S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development[J]. Drug development research, 2018, 79(8): 373-382.
[8]
Zhang LL, Ding K, Liao SS, et al. Sestrin2 reduces ferroptosis via the Keap1/Nrf2 signaling pathway after intestinal ischemia-reperfusion[J]. Free Radic Biol Med, 2024(214): 115-128.
[9]
Dixon SJ, Olzmann JA. The cell biology of ferroptosis[J]. Nat Rev Mol Cell Biol, 2024, 25(6): 424-442.
[10]
Li N, Liu B, Xiong R, et al. HDAC3 deficiency protects against acute lung injury by maintaining epithelial barrier integrity through preserving mitochondrial quality control[J]. Redox Biol, 2023(63): 102746.
[11]
Zhang L, Chen F, Dong J, et al. HDAC3 aberration-incurred GPX4 suppression drives renal ferroptosis and AKI-CKD progression [J]. Redox Biol, 2023(68): 102939.
[12]
Li J, Cao F, Yin H, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88.
[1] 周圆圆, 周怡, 段亚阳, 张怡卿, 朱峰宇, 张超学. 低强度超声缓解顺铂所致小鼠卵巢损伤的实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(12): 1132-1141.
[2] 邓宝, 郭子琳, 仲雷. 乳腺癌治疗中的铁死亡机制与铁基纳米材料应用进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 362-368.
[3] 蒲卢兰, 李静佳, 陈宇, 周瑜清, 荣欣欣, 侯令密, 周方方. NF2/YAP信号通路通过FSP1诱导CD24高表达的三阴性乳腺癌细胞铁死亡[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 206-211.
[4] 廖泽楷, 梁爱琳, 龚启梅. 根尖周病中程序性细胞死亡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 150-155.
[5] 王杰艳, 胡博文, 梁辉. 细胞死亡在肾缺血再灌注损伤中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 653-657.
[6] 赵才林, 向青, 钱航, 施雯, 邱凌霄, 王斌. 基于生物信息学解析急性肺损伤/急性呼吸窘迫综合征铁死亡枢纽基因及其与免疫分型的关系[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 503-509.
[7] 周玲, 肖颖, 李秋诗, 陈兆毅, 李琪, 吴园明. 亚麻木酚素通过circRNA HIPK3影响非小细胞肺癌A549 细胞凋亡及铁死亡的机制研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 362-368.
[8] 汪艳, 孙美玲, 闵凌峰. 基于TCGA 数据库肺腺癌铁死亡相关基因CA9 的鉴定[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 888-894.
[9] 顾晓凌, 吴冠楠, 宋勇. 核因子E2相关因子2(Nrf2)与铁死亡在脓毒症相关急性肺损伤中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 324-328.
[10] 陈明付, 王庆惠, 纪辉涛, 陈银珍, 余小娟, 陈怀章, 赵虎, 王瑜. 基于CiteSpace 对结直肠癌铁死亡研究现状的可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 179-189.
[11] 杨兴业, 彭旭云, 曾倩, 梁伟铖, 肖翠翠, 郑俊, 姚嘉. LMO7通过靶向铁死亡促进肝细胞癌生长[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 370-376.
[12] 周懿, 黄容华, 刘政疆. 5-羟色胺与铁死亡介导的脓毒症心肌病的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(08): 612-617.
[13] 王坤宁, 尤旭颖, 张岱泽, 景燕燕, 张月林, 袁红霞. 食管鳞状细胞癌致病机制研究进展[J/OL]. 中华胃食管反流病电子杂志, 2024, 11(04): 212-216.
[14] 马涛, 赵焓宇, 王毅, 高晓明, 于湘友. 脓毒症相关的铁死亡研究知识图谱分析[J/OL]. 中华卫生应急电子杂志, 2025, 11(05): 299-309.
[15] 欧范妍, 郭乾, 曾莉雄, 陈秋莉, 甘厚玉, 杨洁. 基于机器学习和转录组学综合分析线粒体自噬和铁死亡关键基因在成人脓毒症诱导ARDS中的免疫调控作用机制[J/OL]. 中华卫生应急电子杂志, 2025, 11(02): 86-101.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?