切换至 "中华医学电子期刊资源库"

中华卫生应急电子杂志 ›› 2019, Vol. 05 ›› Issue (05) : 295 -299. doi: 10.3877/cma.j.issn.2095-9133.2019.05.009

所属专题: 文献

论著

机械通气对猪腹腔间隔综合征后心脏继发改变的影响
王宏业1,(), 尉继伟1   
  1. 1. 037005 山西大同,山西大同大学附属医院肿瘤外科
  • 收稿日期:2019-06-03 出版日期:2019-10-18
  • 通信作者: 王宏业
  • 基金资助:
    山西省重点研发计划(指南)项目(201603D321054)

Secondary changes of cardiac function in a pig model of mechanical ventilation improved abdominal hypertension liquid

Hongye Wang1,(), Jiwei Yu1   

  1. 1. Department of Oncology Surgery, Affiliated Hospital of Shanxi Datong University, Datong 037005, China
  • Received:2019-06-03 Published:2019-10-18
  • Corresponding author: Hongye Wang
  • About author:
    Corresponding author: Wang Hongye, Email:
引用本文:

王宏业, 尉继伟. 机械通气对猪腹腔间隔综合征后心脏继发改变的影响[J]. 中华卫生应急电子杂志, 2019, 05(05): 295-299.

Hongye Wang, Jiwei Yu. Secondary changes of cardiac function in a pig model of mechanical ventilation improved abdominal hypertension liquid[J]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2019, 05(05): 295-299.

目的

探索机械通气下猪腹腔间隔室综合征(ACS)心功能损伤变化及可能机制。

方法

健康成年实验猪10头,按随机数字表法分为实验组(6头)和对照组(4头)。实验组在机械通气情况下采用水囊叠加加压法复制腹腔高压液体动物模型,对照组在麻醉后沿腹部切口置入空瘪的加压水囊后即关腹。机械通气设定:容量控制通气(VCV)模式,潮气量(VT)10 mL/kg,呼吸频率16次/min,吸入氧浓度(FiO2)40%,呼气末正压(PEEP)5 cmH2O。通过加压管向加压水囊注入0.9%氯化钠注射液(每注入50 mL测压1次),直至腹腔压力达到30 mmHg,记录并绘制腹腔压力-增容量曲线,抽出部分注液调整腹腔压力维持在25 mmHg,连续观察4 h,并分别在建模前及压力维持后每小时由耳缘静脉抽血5 mL,行心肌酶谱检查。建模并维持腹腔压力4 h后过量丙泊酚静脉推注处死实验动物,完整切取心脏,用10%甲醛溶液固定24 h后常规石蜡包埋,冠状位连续切片(切片厚度4 μm),经苏木精-伊红(HE)染色后在生物光学显微镜下(×200)观察其心肌的病理变化。

结果

腹腔高压液体(猪)动物模型的腹腔内压力与腹腔增容量呈正相关,腹腔压力-腹腔增容量曲线为线性函数,函数方程为:Y=0.1074X-206.045(r2=0.8396,P<0.05)。与建模前对比,在建模后1 h,乳酸脱氢酶(LDH)、肌酸激酶同工酶(CK-MB)和a-羟丁酸脱氢酶(α-HBDH)均升高(P均<0.05),而建模后2~4 h各指标差异均无统计学意义。机械通气下,ACS使心肌纤维嗜酸性变,心肌纤维部分萎缩,部分肥大,横纹消失,局部可见玻璃样变性,可见细胞核聚集。

结论

机械通气改变了ACS腹腔压力-容积曲线的形态,机械通气下ACS发展仍伴随心肌细胞损伤和心肌酶谱改变。

Objective

To explore the changes of cardiac function and its mechanism in the animal model of abdominal compartment syndrome (ACS) under mechanical ventilation.

Methods

Ten healthy adult pigs was randomly divided into experimental group (N=6) and control group (N=4) according to the random number method. In the experimental group; the abdominal hypertensive liquid animal model was reproduced by water sac superimposed pressure under mechanical ventilation; in the control group, the abdomen was closed immediately after the empty pressurized water sac was placed along the abdominal incision after anesthesia. Mechanical ventilation was set in volume controlled ventilation (VCV) mode with tidal volume (VT) 10 mL/kg, respiratory frequency 16 times/min, inhaled oxygen concentration (Fi02) 40%, and positive end-expiratory pressure (PEEP) 5 cm H2O (1 cmH2O= 0.098 kPa). 0.9% sodium chloride was injected into the pressurized water sac through a pressurized tube (once every 50 mL pressure measurement) until the intraperitoneal pressure reached 30 mmHg (1 mmHg = 0.133 kPa). The pressure-volume curve was recorded and drawn. The intraperitoneal pressure was maintained at 25 mmHg after partial injection. The intraperitoneal pressure was continuously observed for 4 hours before and after the establishment of the model, respectively. After maintenance, 5 ml of venous blood was drawn from ear vein every hour, and myocardial enzymogram was performed. After modeling and maintaining abdominal pressure for 4 hours, the animals were killed by intravenous injection of propofol. The hearts were cut intact. The hearts were fixed in 10% formaldehyde solution for 24 hours and embedded in paraffin. Coronal sections were made continuously (4 microns thick). The hearts were stained with hematoxylin-eosin (HE) and the pathological changes of myocardium were observed under bio-optical microscope (x 200).

Results

The intraabdominal pressure of abdominal hypertension liquid (pig) animal model was positively correlated with abdominal volume increasing, and the abdominal pressure abdominal volume curve was a linear function. The function equation was Y=0.1074X-206.045 (r2=0.8396, P<0.05). Compared with before modeling, lactate dehydrogenase (LDH), creatine kinase isoenzyme (CK-MB) and α-hydroxybutyrate dehydrogenase (alpha-HBDH) increased 1 h after modeling (all P<0.05), but there was no significant difference in each index between 2 and 4 h after modeling. Under mechanical ventilation, ACS resulted in eosinophilic degeneration, atrophy, hypertrophy, disappearance of transverse lines, vitreous degeneration and nuclear aggregation in myocardial fibers.

Conclusion

Mechanical ventilation changes the shape of pressure-volume curve of ACS. The development of ACS under mechanical ventilation is accompanied by myocardial cell injury and myocardial enzymogram changes.

图1 机械通气腹腔高压液体动物(猪)模型腹腔压力-增容量曲线
表1 机械通气改良腹腔高压液体动物(猪)模型的心肌酶谱变化一览表(±s)
图2 机械通气改良腹腔高压液体动物(猪)模型的心脏病理改变(HE染色,×200)
1
刘道城,谭浩,张连阳,等.腹腔扩容术对猪休克复苏后腹腔高压症心脏的影响[J].中华实验外科杂志,2012,29(8):1447-1449.
2
余枭,陈晓建,陈道瑾,等.暴发性急性胰腺炎并发腹腔室隔综合征临床诊治进一步探讨[J].中华普通外科杂志,2007,2(8):582-585.
3
楼征,黎介寿,任建安,等.腹腔感染及腹腔高压影响肠蠕动功能的实验研究[J].肠内与肠外营养,2007,14(6):326-329.
4
李育明,周秋香,江伟伟,等.呼气末正压滴定方式对急性呼吸窘迫综合征伴腹腔高压患者呼吸功能的影响研究[J].现代生物医学进展,2017,17(18):3583-3587.
5
葛慧青,徐培峰,陆志华,等.腹内高压对机械通气兔膈肌细胞凋亡和超微结构的影响[J].中华急诊医学杂志,2012,21(8):851-854.
6
倪海滨,李维勤,柯路,等.跨肺压监测设定呼吸机参数对腹腔高压模型猪血流动力学及氧代谢的作用[J].中华危重病急救医学,2011,23(9):555-558.
7
王宏业,尉继伟.水囊叠加加压法建立腹腔高压改良液体动物模型的实验研究[J/CD].中华普通外科学文献(电子版),2018,12(6):380-383.
8
王宏业,尉继伟,杨靖,等.改良腹腔高压水囊动物模型肝、肾病理改变[J].中国实用医刊,2015,42(4):62-65.
9
Malbrain ML, Wilmer A.The polycompartment syndrome: towards an understanding of the interactions between different compartments[J].Intensive Care Med,2007,33(11):1869-1872.
10
吴伟,朱维铭,李宁.腹内高压对门静脉压、中心静脉压影响的实验研究[J].消化外科,2006,5(4):266-268.
11
Rezende-Neto JB, Moore EE, Masuno T,et al.The abdominal compartment syndrome as a second insult during systemic neutrophil priming provokes multiple organ injury[J].Shock,2003,20(4):303-308.
12
王宏业,尉继伟. 机械通气对改良腹腔高压(猪)液体动物模型腹腔压力-容量关系的影响[J/CD].中华诊断学电子杂志,2019,31(1):112-114.
13
Cheatham ML, Malbrain ML, Kirkpatrick A,et al.Results from the international conference of experts on intraabdominal hypertension and abdominal compartment syndrome Ⅱ.Recommendations[J].Intensive Care Med,2007,33(6):951-962.
14
曹建春,张东萍,李乃卿,等.腹腔压升高规律的研究[J].医学研究杂志,2008,37(6):46-49.
15
黄超联,朱文玲,沈珠军,等.冠状动脉介入治疗后血清心肌酶谱升高对预后的影响[J].中华心血管病杂志,2003,31(3):189-191.
16
王宏业,尉继伟,张庆明,等.机械通气改良腹腔高压液体动物模型的建立及腹腔压力变化[J].中华实验外科杂志,2019,36(5):864-866.
[1] 刘丹妮, 敖梦, 冉海涛, 李世玉, 秦芳. 三维超声心动图及二维斑点追踪成像对持续性心房颤动复律后双心房逆向重构的评估[J]. 中华医学超声杂志(电子版), 2023, 20(08): 827-835.
[2] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[3] 吴赤球, 韦曙东, 张辉, 严许清, 梅朵卓嘎, 余丹. 驻不同海拔高度高原人员习服后心脏结构和功能变化的超声心动图评估[J]. 中华医学超声杂志(电子版), 2023, 20(06): 588-593.
[4] 谭芳, 杨娇娇, 沈玉琴, 李炎菲海, 王海蕊, 范思涵, 纪学芹. 胎儿心脏定量分析技术对正常胎儿心脏形态及收缩功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(06): 598-604.
[5] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[6] 吴群, 张鑫, 李培, 王芳韵, 郑淋, 卫海燕, 马宁. 孤立型主动脉缩窄的超声心动图诊断及术后随访研究[J]. 中华医学超声杂志(电子版), 2023, 20(06): 642-646.
[7] 王月丽, 宋砾, 牛宝荣, 陈炎, 张楠, 何怡华. 心脏血管肉瘤的临床及超声心动图特征[J]. 中华医学超声杂志(电子版), 2023, 20(04): 398-403.
[8] 何俊, 马小静, 夏娟, 何亚峰, 谢姝瑞. 原发性非黏液性心脏肿瘤的超声心动图表现及临床特点分析[J]. 中华医学超声杂志(电子版), 2023, 20(04): 411-416.
[9] 李博, 孔德璇, 彭芳华, 吴文瑛. 超声在胎儿肺静脉异位引流诊断中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(04): 437-441.
[10] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[11] 王玲燕, 邹磊, 洪亮, 宋三兵, 付润, 熊胜男, 宋晓春. 心脏外科术后患者并发低三碘甲状腺原氨酸综合征的影响因素分析[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 399-402.
[12] 张妍, 吕强, 韩笑, 王旭, 刘冉, 张利, 陈香美. 挤压综合征大鼠核心脏器肾心肺损伤特点研究[J]. 中华肾病研究电子杂志, 2023, 12(05): 248-253.
[13] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[14] 刘笑笑, 张小杉, 刘群, 马岚, 段莎莎, 施依璐, 张敏洁, 王雅晳. 中国学龄前儿童先天性心脏病流行病学研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1021-1024.
[15] 张生怀. 急性心肌梗死致心源性猝死救治分析一例[J]. 中华临床医师杂志(电子版), 2023, 17(08): 924-926.
阅读次数
全文


摘要