切换至 "中华医学电子期刊资源库"

中华卫生应急电子杂志 ›› 2024, Vol. 10 ›› Issue (01) : 16 -20. doi: 10.3877/cma.j.issn.2095-9133.2024.01.004

论著

血清细胞因子预测急性脑梗死后肺炎的价值
南朝涛1, 陈建2, 王书鸿2, 李刚2, 郝俊杰2,()   
  1. 1. 200120 上海,同济大学附属东方医院神经内科暨脑卒中中心;456200 河南,河南省浚县脑血管病医院神经内科
    2. 200120 上海,同济大学附属东方医院神经内科暨脑卒中中心
  • 收稿日期:2024-01-08 出版日期:2024-02-18
  • 通信作者: 郝俊杰
  • 基金资助:
    上海市浦东新区高原学科建设计划(PWYgy2021-05); 上海市临床重点专科(shslczdzk06103)

Value of serum cytokines in predicting pneumonia secondary to acute cerebral infarction

Chaotao Nan1, Jian Chen2, Shuhong Wang2, Gang Li2, Junjie Hao2,()   

  1. 1. Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Neurology, Junxian Cerebrovascular Hospital, Henan 456200, China
    2. Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
  • Received:2024-01-08 Published:2024-02-18
  • Corresponding author: Junjie Hao
引用本文:

南朝涛, 陈建, 王书鸿, 李刚, 郝俊杰. 血清细胞因子预测急性脑梗死后肺炎的价值[J]. 中华卫生应急电子杂志, 2024, 10(01): 16-20.

Chaotao Nan, Jian Chen, Shuhong Wang, Gang Li, Junjie Hao. Value of serum cytokines in predicting pneumonia secondary to acute cerebral infarction[J]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2024, 10(01): 16-20.

目的

研究血清细胞因子与急性脑梗死后肺炎发生的相关性并探讨其预测价值。

方法

选取在同济大学附属东方医院神经内科重症病房收治的99例急性脑梗死患者为研究对象,其中男性70例(70.71%),女性29例(29.29%);年龄27~95岁,平均(67±13)岁。发病48 h内检测血清十二项细胞因子浓度,包括白细胞介素(interleukin,IL)-1β,IL-2,IL-4,IL-5,IL-6,IL-8,IL-10,IL-12P70,IL-17A,干扰素(interferon,IFN)-α,IFN-γ,肿瘤坏死因子(tumor necrosis factor,TNF)-α以及血清白蛋白、球蛋白、外周血白细胞计数、外周血淋巴细胞计数;依据研究对象其后是否发生肺炎分为肺炎组(44例)和非肺炎组(55例),应用二元Logistic回归分析明确十二项细胞因子是否为急性脑梗死后肺炎发生的独立预测因素。

结果

二元Logistic回归分析显示,血清IL-10浓度升高(OR 1.24,95%CI 1.01~1.52,P=0.039)和外周血白细胞计数增加(OR 1.50,95%CI 1.18~1.92,P=0.001)为急性脑梗死后肺炎的独立预测因素,发病48 h内血清IL-10>2.50ng/L预测急性脑梗死后肺炎的敏感度为61.36%,特异度为64.29%,外周血白细胞>10.00×109/L的敏感度为50.00%,特异度为81.48%,两者联合预测急性脑梗死后肺炎的敏感度为34.09%,特异度为83.33%。

结论

急性脑梗死早期血清IL-10升高和外周血白细胞计数增加有助于预测急性脑梗死后肺炎的发生,特异度较高、但敏感度较低。

Objective

To investigate the correlation between serum cytokines and pneumonia secondary to acute cerebral infarction (ACI) .

Methods

99 patients with acute cerebral infarction admitted to the Neurology Intensive Care Unit of Dongfang Hospital Affiliated to Tongji University were selected as the study subjects, including 70 males (70.71%) and 29 females (29.29%); The age range is from 27 to 95 years old, with an average of (67±13) years old. Within 48 hours of onset, serum concentrations of twelve cytokines, including interleukin-1, were detected β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12P70, IL-17A, interferon (IFN)-α, IFN- γ, Tumor necrosis factor (TNF)-α And serum albumin, globulin, peripheral blood leukocyte count, peripheral blood lymphocyte count; According to whether the research subjects developed pneumonia afterwards, they were divided into pneumonia group (44 cases) and non pneumonia group (55 cases). Binary logistic regression analysis was used to determine whether the twelve cytokines were independent predictors of pneumonia after acute cerebral infarction.

Results

Binary logistic regression analysis showed that the increased serum IL-10 (OR 1.24, 95% CI 1.01-1.52, P=0.039) and increased peripheral blood WBC counts (OR 1.50, 95% CI 1.18-1.92, P=0.001) were independent predictors for ACI secondary pneumonia. To predict ACI secondary pneumonia, the sensitivity and specificity of serum IL-10>2.50 ng/L within 48 hours of ACI, were 61.36% and 64.29%; the sensitivity and specificity of peripheral blood WBC counts>10.00×109/L within 48 hours of ACI, were 50.00% and 81.48%; the sensitivity and specificity of the combination of the two were 34.09% and 83.33%, respectively.

Conclusion

At the early stage of ACI, increased serum IL-10 and peripheral blood WBC counts have a certain diagnostic value for ACI secondary pneumonia, with high specificity but low sensitivity.

表1 两组患者研究指标的单因素分析[ng/L,MQ1,Q3)]
表2 两组患者研究指标的单因素分析[ng/L,MQ1,Q3)]
表3 两组患者研究指标的单因素分析[ng/L,MQ1,Q3)]
表4 两组患者研究指标的单因素分析[×109/L,MQ1,Q3)]
表5 二元Logistic回归分析
表6 预测指标敏感度与特异度[例(%)]
[1]
de Jonge JC, van de Beek D, Lyden P, et al. Temporalprofile of pneumonia after stroke[J]. Stroke, 2022, 53(3): 53-60.
[2]
Li X, Yu J, Shu C. Bibliometric analysis of global research trends on post-stroke pneumonia: current development status and research frontiers[J]. Front Public Health, 2022(10): 950859.
[3]
Zapata-Arriaza E, Mancha F, Bustamante A, et al. Biomarkers predictive value for early diagnosis of stroke-associated pneumonia[J]. Ann Clin Transl Neurol, 2019, 6(9): 1882-1887.
[4]
Chen J, Li X, Huang C, et al. Change of serum inflammatory cytokines levels in patients with chronic obstructive pulmonary disease, pneumonia and lung cancer[J]. Technol Cancer Res Treat, 2020(19): 1533033820951807.
[5]
中国卒中学会急救医学分会,中华医学会急诊医学分会卒中学组,中国老年医学学会急诊医学分会, 等. 卒中相关性肺炎诊治中国专家共识(2019更新版)[J]. 中华急诊医学杂志, 2019, 28(12): 1476-1484.
[6]
Tanaka T, Narazaki M, Kishimoto T. Interleukin (IL-6)immunotherapy[J]. Cold Spring Harb Perspect Biol, 2018, 10(8): a028456.
[7]
Hirano T. IL-6 in inflammation, autoimmunity and cancer[J]. Int Immunol, 2021, 33(3): 127-148.
[8]
Rasquinha MT, Sur M, Lasrado N, et al. IL-10 as a th2 cytokine: differences between mice and humans[J]. J Immunol, 2021, 207(9): 2205-2215.
[9]
Bedke T, Muscate F, Soukou S, et al. Title: IL-10-producing t cells and their dual functions[J]. Semin Immunol, 2019(44): 101335.
[10]
Liu DD, Chu SF, Chen C, et al. Research progress in stroke-induced immunodepression syndrome(SIDS)and stroke-associated pneumonia(SAP)[J]. Neurochem Int, 2018(114): 42-54.
[11]
Grossmann I, Rodriguez K, Soni M, et al. Stroke and pneumonia: mechanisms, risk factors, management, and prevention[J]. Cureus, 2021, 13(11): e19912.
[12]
Guo T, Dou L, Zhou X. Risk factors of stroke complicated with hospital-acquired pneumonia: a systematic review and meta-analysis of cohort studies[J]. Ann Palliat Med, 2021, 10(12): 12381-12389.
[13]
Zhang SY, Huang J, Zhou XL. A Meta-analysis of the Risk Factors for Stroke-associated Pneumonia[J]. J Coll Physicians Surg Pak, 2023, 33(7): 799-803.
[14]
Zawiah M, Hayat Khan A, Abu Farha R, et al. Neutrophil-lymphocyte ratio, monocyte-lymphocyte ratio, and platelet-lymphocyte ratio in stroke-associated pneumonia: a systematic review and meta-analysis[J]. Curr Med Res Opin, 2023, 39(3): 475-482.
[15]
Ni J, Shou W, Wu X, et al. Prediction of stroke-associated pneumonia by the A2DS2, AIS-APS, and ISAN scores: a systematic review and meta-analysis[J]. Expert Rev Respir Med, 2021, 15(11): 1461-1472.
[1] 申成凯, 孟飞, 刘坤, 朱卫洁, 赵海军. 白介素-1β基因型与原发性冻结肩易感性的关联研究[J]. 中华关节外科杂志(电子版), 2024, 18(01): 17-23.
[2] 孙剑玥, 黄瑾, 沈逸冕, 周超群, 程记伟. 重症脑卒中后呼吸机相关肺炎临床及病原学特点[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(01): 11-18.
[3] 孙芳, 王军, 孙钊宁, 余宏川, 杨婷婷, 孙欣荣. 肺泡灌洗液宏基因二代测序在儿童重症肺炎中的应用[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(01): 27-34.
[4] 浦凌宵, 诸俊浩, 陶亮, 王峰, 王萌, 管文贤. 低黏附性胃癌PET/CT影像学特征和脂代谢相关机制研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 255-260.
[5] 宋玮, 黄修丽, 李鑫, 史雅琼, 张晔, 邓飞, 高燕. 改良衰弱指数对重症肺部感染的预后分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 119-122.
[6] 周璐, 钱桂亮, 黄建, 辛永利. 不同剂量亚胺培南西司他丁钠治疗重症肺炎的疗效分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 73-77.
[7] 郝春艳, 吉泽, 成苏杭, 李文思, 王丹. 血清miR-155联合sCD14水平判断慢性阻塞性肺疾病预后的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 87-90.
[8] 叶观生, 黄潘文, 莫伟良, 钟许昌. 序贯NCPAP、HHFNC对肺炎并发呼吸衰竭氧合指数的影响[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 99-102.
[9] 石颖, 胡静, 刘佩本, 王婷婷, 左祥荣, 曹权. CAZ-AVI与多黏菌素B治疗重症CRKP肺炎患者的效果及安全性比较[J]. 中华重症医学电子杂志, 2024, 10(01): 16-24.
[10] 刘付蓉, 翁利, 杜斌. 2020年至2022年中国重症医学临床研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 48-53.
[11] 李益军, 梁兴森, 方细霞, 肖文良, 李湘, 高彦平, 李嘉, 李玲. 温针灸治疗早中期寒湿痹阻型膝骨关节炎的疗效观察[J]. 中华针灸电子杂志, 2024, 13(01): 7-12.
[12] 葛静萍, 尹媛媛, 李燕. 梯度压力袜联合间歇充气加压在老年新型冠状病毒肺炎患者预防下肢深静脉血栓形成中的应用[J]. 中华介入放射学电子杂志, 2024, 12(01): 70-74.
[13] 张姗姗, 叶金锋, 吴立红, 古春明. 广州市肺炎支原体致儿童呼吸系统感染的流行病学及外周血淋巴细胞亚群水平的初步分析[J]. 中华临床实验室管理电子杂志, 2024, 12(01): 33-38.
[14] 吴敬芳, 谭清实, 郗夏颖, 樊节敏, 韩蕾, 辛美云. 鲁西南地区儿童呼吸道合胞病毒肺炎临床特征分析[J]. 中华诊断学电子杂志, 2024, 12(01): 44-49.
[15] 计超, 向群. 乙酰胆碱受体对急性呼吸窘迫综合征小鼠T细胞亚群和炎症因子的影响[J]. 中华诊断学电子杂志, 2024, 12(01): 50-56.
阅读次数
全文


摘要