切换至 "中华医学电子期刊资源库"

中华卫生应急电子杂志 ›› 2025, Vol. 11 ›› Issue (01) : 22 -30. doi: 10.3877/cma.j.issn.2095-9133.2025.01.005

论著

基于智能考勤的缺勤监测系统数据质量与传染病预警有效性分析
杨丽轩1, 梅晓玲1, 谢奕晴1, 刘贤芳1, 谢锴圻1, 王伟业1, 杨震1,()   
  1. 1. 343009 江西吉安,井冈山大学基础医学院
  • 收稿日期:2025-01-22 出版日期:2025-02-18
  • 通信作者: 杨震

Data quality and effectiveness of early warning of infectious diseases in an absenteeism surveillance system based on smart attendance

Lixuan Yang1, Xiaoling Mei1, Yiqing Xie1, Xianfang Liu1, Kaiqi Xie1, Weiye Wang1, Zhen Yang1,()   

  1. 1. Basic Medical School, Jinggangshan University, Jian 343009, China
  • Received:2025-01-22 Published:2025-02-18
  • Corresponding author: Zhen Yang
引用本文:

杨丽轩, 梅晓玲, 谢奕晴, 刘贤芳, 谢锴圻, 王伟业, 杨震. 基于智能考勤的缺勤监测系统数据质量与传染病预警有效性分析[J/OL]. 中华卫生应急电子杂志, 2025, 11(01): 22-30.

Lixuan Yang, Xiaoling Mei, Yiqing Xie, Xianfang Liu, Kaiqi Xie, Weiye Wang, Zhen Yang. Data quality and effectiveness of early warning of infectious diseases in an absenteeism surveillance system based on smart attendance[J/OL]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2025, 11(01): 22-30.

目的

比较人工与智能考勤的数据质量和传染病预警有效性的差异,为传染病症状监测智慧化提供实证参考。

方法

选某市A、B 两所小学,两种方法同步收集2021 年至2022 学年缺勤数据:(1)人脸识别考勤(标准:缺席时间≥1 h),收集1~2(DARL)、3~6 年级(DARH)和全校(DARW1)全因缺勤率。(2)校医人工考勤(标准:缺席1 d),收集全校全因(DARW2)和因病(DARW3)缺勤率。采用时间序列和控制图等方法,以访谈调查确认的疫情信息为参照,比较五类指标的预警有效性。

结果

(1)DARW2 和DARW3 分别占DARW1 的32.6%和25.2%,DARW3 占DARW2 的77.3%。(2)A校,DARW1 与DARW2(r=0.256,P<0.001)、DARW1 与DARW3(r=0.243,P<0.001)、DARW2 与DARW3(r=0.954,P<0.001)均显著相关;B 校,DARW1 与DARW2(r=0.800,P<0.001)、DARW1 与DARW3(r=0.790,P<0.001)、DARW2 与DARW3(r=0.964,P<0.001)也显著相关。(3)DARL、DARH、DARW1、DARW2 和DARW3 的预警敏感度97.0%、95.3%、100%、100%、100%,特异度88.5%、91.7%、81.8%、80.3%、78.4%,约登指数85.5%、87.0%、81.8%、80.3%、78.4%。

结论

相较人工考勤,智能缺勤收集的数据质量更高故监测准确性更好,并且调节缺勤时间和分年级段统计缺勤率可进一步提升智能缺勤监测的传染病暴发预警有效性。

Objective

To compare the difference of data quality and early warning effectiveness of infectious diseases between manual attendance and intelligent attendance, in order to provide empirical reference for the construction of intelligent infectious disease syndromic surveillance.

Methods

Two primary schools A and B in a city were selected to collect absenteeism data for the 2021-2022 school year by the two methods: Face recognition attendance (standard: absence time ≥1 hour), the all-cause absenteeism rates of grades 1-2 (DARL), grades 3-6 (DARH) and the whole school (DARW1) were collected; School doctor attendance (standard: absent for a whole day), the all-cause (DARW2) and sickness (DARW3)absenteeism rate of the whole school were collected.

Results

DARW2 and DARW3 comprised 32.6% and 25.2% of DARW1, respectively, and DARW3 comprised 77.3% of DARW2.In School A, DARW1 was significantly correlated with DARW2 (r=0.256, P<0.001), DARW1 was significantly correlated with DARW3(r=0.243, P<0.001), and DARW2 was significantly correlated with DARW3 (r=0.954, P<0.001); In School B,DARW1 and DARW2 (r=0.800,P<0.001), DARW1 and DARW3 (r=0.790,P<0.001), and DARW2 and DARW3 (r=0.964,P<0.001) were also significantly related.The early warning sensitivity of DARL, DARH,DARW1, DARW2 and DARW3 was 97.0%, 95.3%, 100%, 100%, 100%, the specificity was 88.5%, 91.7%,81.8%, 80.3%, 78.4%, and the Yoden index was 85.5%, 87.0%, 81.8%, 80.3% and 78.4%, respectively.

Conclusions

Compared with manual attendance, smart attendance-based surveillance system has higher data quality and thus better surveillance accuracy.Moreover, adjusting absenteeism time and calculating absenteeism rate by grade segment could further improve the effectiveness of smart attendance-based surveillance system in early warning of infectious disease outbreaks.

表1 A、B两校缺勤数据
图1 A校和B校基于智能考勤和校医考勤不同日缺勤率的时间序列图 注:a为A 校FRASSS报告的1~2年级、3~6年级、全校日全因缺勤率和校医报告的全校日全因和因病缺勤率时间序列图,b为B 校FRASSS报告的1~2年级、3~6年级、全校日全因缺勤率和校医报告的全校日全因和因病缺勤率时间序列图
图2 A校不同监测指标的控制图 注:a为A校智能考勤报告的全校日全因缺勤率控制图,b为A校校医考勤报告的全校日全因缺勤率控制图,c为A校校医考勤报告的全校日因病缺勤率控制图。
图3 B校不同监测指标的控制图 注:a为B校智能考勤报告的全校日全因缺勤率控制图,b为B校校医考勤报告的全校日全因缺勤率控制图,c为B校校医考勤报告的全校日因病缺勤率控制图。
图4 A、B两校FRASSS报告的1-2年级和3-6年级日全因缺勤率控制图 注:a为A校FRASSS报告的1~2年级日全因缺勤率控制图,b为A校FRASSS报告的3~6年级日全因缺勤率控制图,c为B校FRASSS报告的1~2年级日全因缺勤率控制图,d为B校FRASSS报告的3~6年级日全因缺勤率控制图
表2 两校不同指标的预警效果比较(%
[1]
翁熹君, 王锐, 王霄晔, 等.2014-2016年全国学校(托幼机构)传染性突发公共卫生事件流行特征分析[J].疾病监测, 2019, 34(5): 446-450.
[2]
新华网.习近平主持召开专家学者座谈会并发表重要讲话[EB/OL].(2020-06-02)[2025-01-22].https://www.xinhuanet.com/politics/leaders/2020-06/02/c_1126066183.htm.
[3]
Jia P, Liu SY, Yang SJ.Innovations in public health surveillance for emerging infections[J].Annu Rev Public Health, 2023(44): 55-74.
[4]
Peterson D, Andrews JS Jr, Levy BS, et al.An effective schoolbased influenza surveillance system[J].Public Health Rep, 1979,94(1): 88-92.
[5]
Lenaway DD, Ambler A.Evaluation of a school-based influenza surveillance system[J].Public Health Rep, 1995, 110(3): 333-337.
[6]
Mook P, Joseph C, Gates P, et al.Pilot scheme for monitoring sickness absence in schools during the 2006/07 winter in england:can these data be used as a proxy for influenza activity?[J].Euro Surveill, 2007, 12(12): E11-E12.
[7]
Schmidt WP, Pebody R, Mangtani P.School absence data for influenza surveillance: a pilot study in the united kingdom[J].Euro Surveill, 2010, 15(3): 19467.
[8]
Short VL, Marriott CK, Ostrof S, et al.Description and evaluation of the 2009-2010 pennsylvania influenza sentinel school monitoring system[J].Am J Public Health, 2011, 101(11): 2178-83.
[9]
张松建, 李印东, 李玉堂, 等.学校因病缺课监测系统传染病疫情发现效果评价[J].首都公共卫生, 2008, 2(6): 255-257.
[10]
唐小哲, 刘瑶, 刘东山, 等.中国内地中小学校医和卫生室配置情况调查[J].中国公共卫生, 2022, 38(5): 577-581.
[11]
俞丹丹, 李轶群, 乔国良, 等.不同网络直报系统监测学校传染病结果比较[J].中国学校卫生, 2012, 33(5): 602-603.
[12]
Baer A, Rodriguez CV, Duchin JS.An automated system for public health surveillance of school absenteeism[J].J Public Health Manag Pract, 2011, 17(1): 59-64.
[13]
Lawpoolsri S, Khamsiriwatchara A, Liulark W, et al.Real-time monitoring of school absenteeism to enhance disease surveillance:a pilot study of a mobile electronic reporting system[J].JMIR Mhealth Uhealth, 2014, 2(2): e22.14.
[14]
Ip DK, Lau EH, So HC, et al.A smart card-based electronic school absenteeism system for influenza-like illness surveillance in Hong Kong: design, implementation, and feasibility assessment[J].JMIR Public Health Surveill, 2017, 3(4): e67.
[15]
Yang Z, Jiang CH.A Pilot influenza syndromic surveillance system based on absenteeism and temperature in China:development and usability[J].JMIR Public Health Surveill, 2022,8(10): e37177.
[16]
中华人民共和国国家卫生健康委员会.学校传染病症状监测预警技术指南[EB/OL].(2020-08-10)[2025-01-22] http://www.nhc.gov.cn/wjw/pqt/202008/b11fe00150cc493b97873f170bb991 3f.shtml.
[17]
Donaldson AL, Hardstaff JL, Harris JP, et al.School - based surveillance of acute infectious disease in children: a systematic review[J].BMC Infect Dis, 2021, 21(1): 744.
[18]
Kom Mogto C A, De Serres G, Douville Fradet M, et al.School absenteeism as an adjunct surveillance indicator: experience during the second wave of the 2009 H1N1 pandemic in quebec,canada[J].PLoS One, 2012, 7(3): e34084.
[19]
Simon AK, Hollander GA, McMichael A.Evolution of the immune system in humans from infancy to old age[J].Proc Biol Sci, 2015,282(1821): 20143085.
[20]
杨维中.传染病预警理论与实践[M].北京: 人民卫生出版社,2012.
[21]
甘忠志, 唐小清, 向辉, 等.2020-2021 年重庆市南岸区中小学生因病缺勤监测预警模型研究[J].中国校医, 2022, 36(7): 500-503, 552.
[22]
周昌明, 赵琦, 宋肖肖, 徐飚.基于网络报告的农村地区小学生缺勤缺课行为分析[J].中华疾病控制杂志, 2016, 20(6): 614-616, 633.
[23]
潘晨建, 赵琦, 周昌明, 等.江西省农村地区小学生因病缺课行为对传染病症状监测系统中学生缺课监测有效性的影响[J].中国预防医学杂志, 2014, 15(8): 705-709.
[24]
Neuzil KM, Hohlbein C, Zhu YW.Illness among schoolchildren during influenza season: effect on school absenteeism, parental absenteeism from work, and secondary illness in families[J].Arch Pediatr Adolesc Med, 2002, 156(10): 986-991.
[25]
Groseclose SL, Buckeridge DL.Public health surveillance systems: recent advances in their use and evaluation[J].Annu Rev Public Health, 2017(38): 57-79.
[1] 刘丽, 贾小慧, 刘艳, 沈晓佳, 周谦, 张海洋, 向丽佳, 温晓滨, 周元琳, 许婉婷, 杨磊, 李磊, 王林, 唐义蓉. 2017—2022年成都市儿童流行性感冒流行特征及儿童早期预警评分对病情严重程度的预测[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 235-241.
[2] 呼吸道传染病标本采集及检测专家委员会. 呼吸道传染病标本采集及检测专家共识[J/OL]. 中华实验和临床感染病杂志(电子版), 2022, 16(04): 217-228.
[3] 张东敏, 李臻, 梁珊珊, 杜民权, 江汉. 学龄儿童第一恒磨牙龋综合干预2年效果评价[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 167-171.
[4] 王瑾瑜, 张善东, 白晶. 北京部分地区2019-2021年呼吸道传染病发病情况分析[J/OL]. 中华肺部疾病杂志(电子版), 2022, 15(05): 670-672.
[5] 杨家盛, 何耀为, 刘华盛, 龚金如, 王燕, 林国辉, 孙瑞琳. 52例疑似COVID-19的防控及临床特点分析[J/OL]. 中华肺部疾病杂志(电子版), 2020, 13(05): 659-662.
[6] 陈宏. 信任是医患关系和谐的基石[J/OL]. 中华结直肠疾病电子杂志, 2020, 09(04): 425-428.
[7] 李金秀, 徐敏, 唐莉, 谢霞, 田沂, 黄伶智, 吴斯杰, 龙海, 柴湘平. 重大突发传染病时成建制重症救治团队运行模式的经验探讨[J/OL]. 中华重症医学电子杂志, 2022, 08(03): 263-266.
[8] 敬勇, 李鑫, 付晶, 常莉, 肖宁, 马黎, 乐磊, 黄雷, 王学杰, 尹立雪, 陈康, 吕传柱, 刘于嵩. 大规模突发性公共卫生事件的紧急医学救援实践[J/OL]. 中华临床医师杂志(电子版), 2022, 16(09): 821-827.
[9] 马庆华, 徐亮, 齐娜娜, 吴玉燕, 顾明兰, 许海易, 徐文新. 社区预防保健在新型冠状病毒肺炎疫情防控中的实践经验[J/OL]. 中华临床医师杂志(电子版), 2020, 14(07): 518-522.
[10] 王意喆, 杨晓琨, 高颖, 张桂英, 张志国. 高校直属附院中医类别学生疫情防控意识形态现状与思政教育提升措施[J/OL]. 中华针灸电子杂志, 2023, 12(01): 42-44.
[11] 朱镭, 朱庆义. 金氏菌属:引起婴幼儿侵袭性传染病的新发病原体[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(04): 229-237.
[12] 于佳佳, 张旭霞, 李传友, 刘毅, 唐神结. 规律成簇间隔短回文重复序列及其相关蛋白基因编辑技术在感染性疾病诊断中的应用及其进展[J/OL]. 中华诊断学电子杂志, 2021, 09(01): 62-66.
[13] 温敏, 易云兰, 吕超群, 伍友春, 段钢, 石义容, 操静. 大规模新发突发传染病疫情时传染病医院应急管理模式探索实践[J/OL]. 中华卫生应急电子杂志, 2023, 09(01): 20-24.
[14] 吴洪涛, 梁娟娟, 王春平. 重大传染病疫情社区韧性内涵与外延[J/OL]. 中华卫生应急电子杂志, 2023, 09(01): 13-19.
[15] 李群. 加强卫生应急体系建设,做好大流行疾病准备和应对[J/OL]. 中华卫生应急电子杂志, 2023, 09(01): 64-64.
阅读次数
全文


摘要